
Briefcase Documentation
Release 0.3.18

Russell Keith-Magee

May 06, 2024

CONTENTS

1 Table of contents 3
1.1 Tutorial . 3
1.2 How-to guides . 3
1.3 Background . 3
1.4 Reference . 3

2 Community 5
2.1 Tutorial . 5
2.2 How-to guides . 5
2.3 About Briefcase . 40
2.4 Reference . 61

i

ii

Briefcase Documentation, Release 0.3.18

Briefcase is a tool for converting a Python project into a standalone native application. It supports producing binaries
for:

• macOS, as a standalone .app

• Windows, as an MSI installer

• Linux, as a native system package

• iOS, as an Xcode project

• Android, as a Gradle project

• the Web, as a static web site using PyScript for client-side Python

It is also extensible, allowing for additional platforms and installation formats to be produced.

CONTENTS 1

Briefcase Documentation, Release 0.3.18

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Tutorial

Get started with a hands-on introduction for beginners.

1.2 How-to guides

Guides and recipes for common problems and tasks, including how to contribute.

1.3 Background

Explanation and discussion of key topics and concepts.

1.4 Reference

Technical reference - commands, modules, classes, methods.

3

Briefcase Documentation, Release 0.3.18

4 Chapter 1. Table of contents

CHAPTER

TWO

COMMUNITY

Briefcase is part of the BeeWare suite. You can talk to the community through:

• @beeware@fosstodon.org on Mastodon

• Discord

• The Briefcase Github Discussions forum

2.1 Tutorial

Briefcase is a packaging tool - but first you need something to package. The best way to learn about Briefcase is to see
it working with the rest of the BeeWare suite of tools.

The BeeWare tutorial walks you through the process of building a native Python application from scratch.

Once you’ve done that tutorial, the Briefcase How-To Guides provide details on performing specific tasks with Brief-
case.

2.2 How-to guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and
assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

2.2.1 Obtaining a Code Signing identity

If you are intending to distribute an application, it is advisable (and, on some platforms, necessary) to code sign your ap-
plication. This is a cryptographic process that identifies you as a developer, and identifies your application as something
that has been distributed by you.

The process of obtaining a code signing identity is slightly different on every platform. The following are guides for
every platform that Briefcase supports:

5

https://beeware.org
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/
https://github.com/beeware/briefcase/discussions
https://docs.beeware.org/en/latest/

Briefcase Documentation, Release 0.3.18

Android

Overview

Android requires that all apps be digitally signed with a certificate before they are installed on a device or updated.
Android phones enforce a policy that updates to an app must come from the same signing key to validate. This allows
the phone to be sure an update is fundamentally the same app, i.e., has the same author.

This documentation covers one way to sign your app where the Google Play Store maintains the authoritative key for
your app. This approach is called App Signing by Google Play.

You will need to generate a key on your development workstation to sign an app package before sending it to the Google
Play store. If you use app signing by Google Play, the key on your workstation is called the upload key.

Generate a key

You will need to decide where to store the upload key. A good default is to use one keystore file per app you are creating
and to store it in the .android folder within your home folder. The folder is automatically created by the Android tools;
but if it doesn’t exist, create it.

We recommend using a separate keystore file per app. Below, we use the upload-key-helloworld.jks filename. This
assumes you are building an app called “Hello World”; use the (lowercase, no spaces) app name, helloworld in the
filename for the keystore.

Try not to lose this key; make backups if needed. If you do lose this key, you can contact Google Play support to reset
it. If you choose not to use app signing by Google Play, it is absolutely essential that you not lose this key. For this
reason, we recommend using App Signing by Google Play.

macOS

Linux

Windows (cmd)

Windows (PowerShell)

$ mkdir -p ~/.android
$ ~/Library/Caches/org.beeware.briefcase/tools/java/Contents/Home/bin/keytool -keyalg␣
→˓RSA -deststoretype pkcs12 -genkey -v -storepass android -keystore ~/.android/upload-
→˓key-helloworld.jks -keysize 2048 -dname "cn=Upload Key" -alias upload-key -validity␣
→˓10000

$ mkdir -p ~/.android
$ ~/.cache/briefcase/tools/java/bin/keytool -keyalg RSA -deststoretype pkcs12 -genkey -v␣
→˓-storepass android -keystore ~/.android/upload-key-helloworld.jks -keysize 2048 -dname
→˓"cn=Upload Key" -alias upload-key -validity 10000

C:\...>IF not exist %HOMEPATH%\.android mkdir %HOMEPATH%\.android
C:\...>%LOCALAPPDATA%\BeeWare\briefcase\Cache\tools\java\bin\keytool.exe -keyalg RSA -
→˓deststoretype pkcs12 -genkey -v -storepass android -keystore %HOMEPATH%\.android\
→˓upload-key-helloworld.jks -keysize 2048 -dname "cn=Upload Key" -alias upload-key -
→˓validity 10000

PS C:\...> If (-Not (Test-Path "$env:HOMEPATH/.android")) { New-Item -Path "
→˓$env:HOMEPATH\.android" -ItemType Directory }

(continues on next page)

6 Chapter 2. Community

https://developer.android.com/studio/publish/app-signing
https://support.google.com/googleplay/android-developer/answer/9842756
https://support.google.com/googleplay/android-developer/answer/9842756#reset
https://support.google.com/googleplay/android-developer/answer/9842756#reset

Briefcase Documentation, Release 0.3.18

(continued from previous page)

PS C:\...> & "$env:LOCALAPPDATA\BeeWare\briefcase\Cache\tools\java\bin\keytool.exe" -
→˓keyalg RSA -deststoretype pkcs12 -genkey -v -storepass android -keystore "
→˓$env:HOMEPATH\.android\upload-key-helloworld.jks" -keysize 2048 -dname "cn=Upload Key"␣
→˓-alias upload-key -validity 10000

This creates a 2048-bit key and stores it in a Java keystore located in the .android folder within your home folder.
Since the key’s purpose is to be used as an upload key for the Google Play store, we call the key “upload-key”.

We use a password of android. This is the default password for common Android keystores. You can change the
password if you like. It is more important to limit who has access to the keystore file than to change the password.

See Publishing your app for instructions on using this key to upload an app to the Google Play store.

macOS

Overview

In this tutorial, we’ll learn how to generate a macOS code signing identity, which is required to distribute your appli-
cation across MacOS and iOS devices.

We will specifically focus on generating a Developer ID Application identity, which is used to distribute a macOS
application outside of the Mac App store. However, the procedure for creating all other types of identities is exactly
the same. Once you familiarize yourself with the general process, you’ll be able to create identities required to upload
applications to the Mac or iOS App stores without much trouble.

Getting the code signing identity will require five main steps, which you will be guided through in this tutorial:

1. Enrolling in the Apple Developer program

2. Generating a Certificate Signing Request on Keychain Access

3. Creating a Developer ID Application Certificate

4. Accessing the details of the Certificate on your Terminal

5. Anticipating potential issues with the identity in the future

Enrolling in the Apple Developer program

You can enroll in the Apple Developer program either as an individual, or as an organization. In both cases, you’ll have
to follow the instructions on the Apple Developer website.

Once you click “Start Enrollment Now” at the bottom of the page, you can either sign in with your existing Apple ID
or alternatively, create a new one:

2.2. How-to guides 7

https://developers.google.com/android/guides/client-auth
https://developer.apple.com/developer-id/
https://developer.apple.com/programs/enroll/

Briefcase Documentation, Release 0.3.18

There are two types of Apple Developer account - a personal account, and a business account. If you use your personal
Apple ID to create an Apple Developer account, converting it to a business account later can be painful. If you use
your personal Apple ID to create a business account, extracting your personal credentials later can also be painful.

As part of the registration procedure, you’ll have to pay a $99 fee, which will be charged on an annual basis.

Fee waivers

If you’re registering as a non-profit organization, an educational institution or a government entity, you may be eligible
for a fee waiver, which you can read more about here.

Generating a certificate request on Keychain Access

Now that you’re set up with an Apple Developer ID, it’s time to create a certificate request, which you’ll then use to
generate a valid Developer ID certificate.

First, open the Keychain Access application on your Mac. At the top left of your screen, click Keychain Access >
Certificate Assistant > Request a Certificate From a Certificate Authority:

A Certificate Assistant window should open up, looking similar to this one:

8 Chapter 2. Community

https://developer.apple.com/support/membership-fee-waiver/

Briefcase Documentation, Release 0.3.18

• In the field User Email Address, type the email address associated with your Apple Developer Account (e.g.
jane@example.com).

• Common Name should refer to the name with which you registered to the Apple Developer program (e.g. Jane
Doe).

• The field CA Email Address can be left empty.

• Make sure that you choose Saved to Disk in the Request is field.

• Click “Continue”, and save your Certificate Signing Request somewhere on your local machine. The saved
certificate request should be of the format example.certSigningRequest.

As documented by Apple, this procedure creates not only the file you have just saved, but also a private key in your
Keychain, which will establish the validity of your actual Developer ID Application certificate later on.

Creating a Developer ID Application Certificate

Once you have saved the certificate request, head to the Apple Developer website, log in, and click “Certificates,
Identifiers and Profiles”:

When you land in the Certificates section, click the “+” symbol to create a new certificate:

2.2. How-to guides 9

https://help.apple.com/xcode/mac/current/#/dev97211aeac
https://developer.apple.com/

Briefcase Documentation, Release 0.3.18

In the next page, you’ll have to choose the type of certificate you want to generate. In the Software section, choose the
option of “Developer ID Application”. It’s very important you choose the right type of certificate.

Later on, if you want to generate another code signing certificate for other purposes, such as uploading your application
the App store, you’ll simply have to choose a different type of a certificate on this page.

Note: If you’ve been registered as an organization, there’s a chance that the option to choose the Developer ID
Application certificate is unavailable. This may happen if you’re not assigned the role of the Account Holder. You can
access and change these roles using App Store Connect.

Select “Developer ID Application” and click “Continue”. In the next window, click “Choose file” and upload the
Certificate Signing Request you have just generated on your Keychain:

Once you click “Continue”, Apple will generate your Developer ID Application Certificate. Click the “Download”
button and save the certificate on your local machine:

The certificate should be of the format example.cer. Once you download it, double-click to install it in your Keychain
Access.

If you now open your Keychain, selected the login keychain on the left-hand side, and select the My Certificates
tab, you should see a certificate with the title “Developer ID Application: <your name>”.

Click on the certificate and make sure you see a note that reads This certificate is valid.

10 Chapter 2. Community

https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution
https://appstoreconnect.apple.com/login

Briefcase Documentation, Release 0.3.18

Note: In this screenshot, the certificate details have been redacted. Your certificate should show expiration details,
trust chains, and other details about you, the certificate issuer (Apple), and the certificate.

Congratulations! You’ve just successfully installed the Developer ID Application certificate.

Keep this certificate safe!

The specific type of the certificate you have just created is quite precious, and you should make sure to keep it safe. A
single Developer ID Application Certificate can be used to sign, notarize and distribute multiple applications outside
of the Mac App store, which is why a very limited number of them can be created on a particular Developer Account.
You should consider making a backup copy, which will require you to export the certificate together with the associated
private key from the Keychain. The procedure for doing so is documented by Apple.

Next steps

Now you can use the certificate to sign and notarize your application with the briefcase package command.

When you invoke briefcase package, you will be prompted to select the code signing certificate you want to use from
the certificates that are installed. Once you select a certificate, Briefcase will output the command line invocation to
select that certificate for unattended installation.

Windows

Overview

While Windows does not require applications to be code signed, doing so can help ensure the authenticity and integrity
of your application when a user is trying to install it. This includes preventing Windows from showing warnings to
users that your application is untrusted and may be dangerous.

To code sign your application with Briefcase, you must obtain a code signing certificate from a Certificate Authority
(CA) and install it in a Windows certificate store.

2.2. How-to guides 11

https://developer.apple.com/forums/thread/657993
https://help.apple.com/xcode/mac/current/#/dev3a05256b8
https://support.apple.com/guide/keychain-access/import-and-export-keychain-items-kyca35961/mac

Briefcase Documentation, Release 0.3.18

Obtain a Certificate

Microsoft manages a collection of Certificate Authorities that are trusted by default in Windows. A code signing
certificate from any of these included entities should be trusted by a modern Windows machine.

Of note, a certificate for code signing is different from a certificate for other cryptographic purposes. For instance,
a certificate used by a website to create encrypted HTTP connections cannot be used for code signing. Therefore,
a request for a code signing certificate must specifically be for code signing. Certificate Authorities offering these
services will make this clear during the request process.

Additionally, it is possible to create a code signing certificate directly within Windows. However, when you create a
certificate yourself, it will likely be considered “self-signed”. Using such a certificate to code sign an application will
not imbue it with the trust that a certificate from a Certificate Authority provides. Therefore, a self-signed certificate
should not be used to code sign applications for distribution.

Install the Certificate

Once a code signing certificate is requested, Certificate Authorities may vary is how the certificate is actually delivered
to you. In general, though, you’ll likely receive an encrypted file containing both the certificate and its private key.
Depending on the exact nature of the file format, Windows provides several commands to import certificates in to one
of its certificate stores.

For instance, this will a import PFX file in to the Personal certificate store of Current User:

CMD

PowerShell

C:\...>certutil.exe -user -importpfx -p MySecretPassword My .\cert.pfx

PS C:\...> Import-PfxCertificate -FilePath .\cert.pfx -CertStoreLocation Cert:\
→˓CurrentUser\My -Password MySecretPassword

Refer to your Certificate Authority’s documentation for specific instructions.

Certificate’s SHA-1 Thumbprint

On Windows, briefcase package cannot retrieve the list of installed code signing certificates automatically. You need
to retrieve the identity manually, and provide the certificates identity as a command line argument.

The certificates installed on the machine are available in the Certificate Manager. Search for “User Certificates” in the
Start Menu to access certificates for Current User or search for “Computer Certificates” for certificates for Local
Machine. Alternatively, the command certmgr.msc will open the manager for Current User and certlm.msc for
Local Machine.

Once you locate your certificate in the certificate store it was installed in to, double-click it to access information about
it. Near the bottom of the list on the Details tab, you’ll find the Thumbprint field with the 40 character SHA-1 hash to
use as the identity in the Briefcase package command.

(venv) C:\...>briefcase package --identity <certificate thumbprint>

12 Chapter 2. Community

https://learn.microsoft.com/en-us/security/trusted-root/release-notes

Briefcase Documentation, Release 0.3.18

2.2.2 Upgrading from Briefcase v0.2

Briefcase v0.2 was built as a setuptools extension. The configuration for your project was contained in a setup.py or
setup.cfg file, and you invoked Briefcase using python setup.py <platform>.

Briefcase v0.3 represents a significant change in the development of Briefcase. Briefcase is now a PEP518-compliant
build tool. It uses pyproject.toml for configuration, and is invoked using a standalone briefcase command. This
change gives significantly improved flexibility in configuring Briefcase apps, and much better control over the devel-
opment process.

However, this change is also backwards incompatible. If you have a project that was using Briefcase v0.2, you’ll need
to make some major changes to your configuration and processes as part of upgrading to v0.3.

Configuration

To port your application’s configuration to Briefcase v0.3, you’ll need to add a pyproject.toml file (in, as the exten-
sion suggests, TOML format). This file contains similar content to your setup.py or setup.cfg file.

The following is a minimal starting point for your pyproject.toml file:

[tool.briefcase]
project_name = "My Project"
bundle = "com.example"
version = "0.1"
author = "Jane Developer"
author_email = "jane@example.com"
requires = []

[tool.briefcase.app.myapp]
formal_name = "My App"
description = "My first Briefcase App"
requires = []
sources = ['src/myapp']

[tool.briefcase.app.myapp.macOS]
requires = ['toga-cocoa==0.3.0.dev15']

[tool.briefcase.app.myapp.windows]
requires = ['toga-winforms==0.3.0.dev15']

[tool.briefcase.app.myapp.linux]
requires = ['toga-gtk==0.3.0.dev15']

[tool.briefcase.app.myapp.iOS]
requires = ['toga-iOS==0.3.0.dev15']

The configuration sections are tool specific, and start with the prefix tool.briefcase. Additional dotted paths define
the specificity of the settings that follow.

Most of the keys in your setup.py will map directly to the same key in your pyproject.toml (e.g., version,
description). However, the following pointers may help port other values.

• Briefcase v0.2 assumed that a setup.py file described a single app. Briefcase v0.3 allows a project to define
multiple distributable applications. The project_name is the name for the collection of apps described by this
pyproject.toml; formal_name is the name for a single app. If your project defines a single app, your formal
name and project name will probably be the same.

2.2. How-to guides 13

https://peps.python.org/pep-0518/
https://peps.python.org/pep-0518/
https://github.com/toml-lang/toml

Briefcase Documentation, Release 0.3.18

• There is no explicit definition for the app’s name - the app name is derived from the section header name (i.e.,
[tool.briefcase.app.myapp] defines the existence of an app named myapp).

• version must be defined as a string in your pyproject.toml file. If you need to know the version of your
app (or the value of any other app metadata specified in pyproject.toml) at runtime, you should use im-
portlib.metadata. Briefcase will create myapp.dist-info for your application (using your app name instead of
myapp).

• Briefcase v0.3 configuration files are hierarchical. [tool.briefcase] describes configuration arguments
for the entire project; [tool.briefcase.app.myapp] describes configuration arguments for the applica-
tion named myapp; [tool.briefcase.app.myapp.macOS] describes configuration arguments for macOS de-
ployments of myapp, and [tool.briefcase.app.myapp.macOS.dmg] describes configuration arguments for
DMG deployments of myapp on macOS. The example above doesn’t contain a dmg section; generally, you won’t
need one unless you’re packaging for multiple output formats on a single platform.

For most keys, the “most specific” value wins - so, a value for description defined at the platform level will
override any value at the app level, and so on. The two exceptions are requires and sources, which are
cumulative - the values defined at the platform level will be appended to the values at the app level and the
project level.

• The install_requires and app_requires keys in setup.py are replaced by requires in your pyproject.
toml. requires can be specified at the project level, the app level, the platform level, or the output format level.

• The packages (and other various source code and data-defining attributes) in setup.py have been replaced
with a single sources key. The paths specified in sources will be copied in their entirety into the packaged
application.

Once you’ve created and tested your pyproject.toml, you can delete your setup.py file. You may also be able to
delete your setup.cfg file, depending on whether it defines any tool configurations (e.g., flake8 or pytest config-
urations).

Invocation

In Briefcase v0.2, there was only one entry point: python setup.py <platform>. This would generate a complete
output artefact; and, if you provided the -s argument, would also start the app.

Briefcase v0.3 uses its own briefcase entry point, with subcommands to perform specific functions:

• briefcase new - Bootstrap a new project (generating a pyproject.toml and other stub content).

• briefcase dev - Run the app in developer mode, using the current virtual environment.

• briefcase create - Use the platform template to generate the files needed to build a distributable artefact for
the platform.

• briefcase update - Update the source code of the application in the generated project.

• briefcase build - Run whatever compilation process is necessary to produce an executable file for the plat-
form.

• briefcase run - Run the executable file for the platform.

• briefcase package - Perform whatever post-processing is necessary to wrap the executable into a distributable
artefact (e.g., an installer).

When using these commands, there is no need to specify the platform (i.e. macOSwhen on a Mac). The current platform
will be detected and the appropriate output format will be selected.

If you want to target a different platform, you can specify that platform as an argument. This will be required when
building for mobile platforms (since you’ll never be running Briefcase where the mobile platform is “native”). For

14 Chapter 2. Community

https://docs.python.org/3/library/importlib.metadata.html
https://docs.python.org/3/library/importlib.metadata.html

Briefcase Documentation, Release 0.3.18

example, if you’re on a Mac, briefcase create macOS and briefcase create would perform the same task;
briefcase create iOS would build an iOS project.

The exceptions to this platform specification are briefcase new and briefcase dev. These two commands are
platform agnostic.

The Briefcase sub-commands will also detect if previous steps haven’t been executed, and invoke any prior steps that are
required. For example, if you execute briefcase run on clean project, Briefcase will detect that there are no platform
files, and will automatically run briefcase create and briefcase build. This won’t occur on subsequent runs.

Briefcase v0.3 also allows for multiple output formats on a single platform. The only platform that currently exposes
capability is macOS, which supports both app and dmg output formats (with dmg being the platform default).

To use a different output format, add the format as an extra argument to each command after the platform. For example,
to create a app file for macOS, you would run:

$ briefcase create macOS app
$ briefcase build macOS app
$ briefcase run macOS app
$ briefcase package macOS app

In the future, we hope to add other output formats for other platforms - Snap and FlatPak on Linux; NSIS installers on
Windows, and possibly others. If you’re interested in adding support for one of these platforms, please get in touch (or,
submit a pull request!)

2.2.3 Accessing Briefcase packaging metadata at runtime

When Briefcase installs your app, it adds a PEP566 metadata file containing information about your app, and Briefcase
itself. You can retrieve this information at runtime using the Python builtin library ‘importlib.metadata’. importlib.
metadata was added in Python 3.8; however, it has been backported and published on PyPI as ‘importlib_metadata’
for older versions of Python.

To access application metadata at runtime, you can use the following code:

import sys
try:

from importlib import metadata as importlib_metadata
except ImportError:

Backwards compatibility - importlib.metadata was added in Python 3.8
import importlib_metadata

Find the name of the module that was used to start the app
app_module = sys.modules['__main__'].__package__
Retrieve the app's metadata
metadata = importlib_metadata.metadata(app_module)

The metadata returned by this code will be a dictionary-like object that contains the following identifying keys:

• Metadata-Version - The syntax version of the metadata file itself (as defined in PEP566).

• Briefcase-Version - The version of Briefcase used to package the app. The existence of this key in app metadata
can be used to identify if your application code is running in a Briefcase container; it will only exist if the app
has been packaged by Briefcase.

It will also have the following keys, derived from your application’s pyproject.toml configuration:

• Name - app_name

2.2. How-to guides 15

https://snapcraft.io/
https://flatpak.org
https://nsis.sourceforge.io/Main_Page
https://beeware.org/bee/chat/
https://peps.python.org/pep-0566/
https://docs.python.org/3/library/importlib.metadata.html
https://pypi.org/project/importlib-metadata/
https://peps.python.org/pep-0566/

Briefcase Documentation, Release 0.3.18

• Formal-Name - formal_name

• App-ID - bundle and app_name, joined with a .

• Version - version

• Summary - description

The metadata may also contain the following keys, if they have been defined in your app’s pyproject.toml configu-
ration:

• Home-page - url

• Author - author

• Author-email - author_email

For example, the metadata for the app constructed by the BeeWare Tutorial would contain:

Metadata-Version: 2.1
Briefcase-Version: 0.3.1
Name: helloworld
Formal-Name: Hello World
App-ID: com.example.helloworld
Version: 0.0.1
Home-page: https://example.com/helloworld
Author: Jane Developer
Author-email: jane@example.com
Summary: My first application

2.2.4 Contributing code to Briefcase

If you experience problems with Briefcase, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

tl;dr

Set up the dev environment by running:

macOS

Linux

Windows

$ git clone https://github.com/beeware/briefcase.git
$ cd briefcase
$ python3 -m venv venv
$. venv/bin/activate
(venv) $ python -m pip install -Ue ".[dev]"
(venv) $ pre-commit install

$ git clone https://github.com/beeware/briefcase.git
$ cd briefcase
$ python3 -m venv venv
$. venv/bin/activate

(continues on next page)

16 Chapter 2. Community

https://docs.beeware.org/en/latest/tutorial/tutorial-1.html
https://github.com/beeware/briefcase/issues
https://github.com/beeware/briefcase
https://github.com/beeware/briefcase/pulls

Briefcase Documentation, Release 0.3.18

(continued from previous page)

(venv) $ python -m pip install -Ue ".[dev]"
(venv) $ pre-commit install

C:\...>git clone https://github.com/beeware/briefcase.git
C:\...>cd briefcase
C:\...>py -m venv venv
C:\...>venv\Scripts\activate
(venv) C:\...>python -m pip install -Ue .[dev]
(venv) C:\...>pre-commit install

Invoke CI checks and tests by running:

macOS

Linux

Windows

(venv) $ tox p -m ci

(venv) $ tox p -m ci

(venv) C:\...>tox p -m ci

Setting up your development environment

The recommended way of setting up your development environment for Briefcase is to use a virtual environment, and
then install the development version of Briefcase and its dependencies:

Clone Briefcase and create virtual environment

macOS

Linux

Windows

$ git clone https://github.com/beeware/briefcase.git
$ cd briefcase
$ python3 -m venv venv
$. venv/bin/activate
(venv) $ python -m pip install -Ue ".[dev]"

$ git clone https://github.com/beeware/briefcase.git
$ cd briefcase
$ python3 -m venv venv
$. venv/bin/activate
(venv) $ python -m pip install -Ue ".[dev]"

C:\...>git clone https://github.com/beeware/briefcase.git
C:\...>cd briefcase

(continues on next page)

2.2. How-to guides 17

https://docs.python.org/3/library/venv.html

Briefcase Documentation, Release 0.3.18

(continued from previous page)

C:\...>py -m venv venv
C:\...>venv\Scripts\activate
(venv) C:\...>python -m pip install -Ue .[dev]

Install pre-commit

Briefcase uses a tool called pre-commit to identify simple issues and standardize code formatting. It does this by
installing a git hook that automatically runs a series of code linters prior to finalizing any git commit. To enable
pre-commit, run:

macOS

Linux

Windows

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

(venv) C:\...>pre-commit install
pre-commit installed at .git/hooks/pre-commit

Pre-commit automatically runs during the commit

With pre-commit installed as a git hook for verifying commits, the pre-commit hooks configured in .
pre-commit-config.yaml for Briefcase must all pass before the commit is successful. If there are any issues found
with the commit, this will cause your commit to fail. Where possible, pre-commit will make the changes needed to
correct the problems it has found:

macOS

Linux

Windows

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
black..Failed
- hook id: black
- files were modified by this hook

(continues on next page)

18 Chapter 2. Community

https://pre-commit.com

Briefcase Documentation, Release 0.3.18

(continued from previous page)

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed

(venv) C:\...>git add some/interesting_file.py
(venv) C:\...>git commit -m "Minor change"
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed

2.2. How-to guides 19

Briefcase Documentation, Release 0.3.18

You can then re-add any files that were modified as a result of the pre-commit checks, and re-commit the change.

macOS

Linux

Windows

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
black..Passed
flake8...Passed
[bugfix daedd37a] Minor change
1 file changed, 2 insertions(+)
create mode 100644 some/interesting_file.py

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
black..Passed
flake8...Passed
[bugfix daedd37a] Minor change
1 file changed, 2 insertions(+)
create mode 100644 some/interesting_file.py

(venv) C:\...>git add some\interesting_file.py
(venv) C:\...>git commit -m "Minor change"
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
black..Passed

(continues on next page)

20 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

(continued from previous page)

flake8...Passed
[bugfix daedd37a] Minor change
1 file changed, 2 insertions(+)
create mode 100644 some/interesting_file.py

Create a new branch in git

When you clone Briefcase, it will default to checking out the default branch, main. However, your changes should be
committed to a new branch instead of being committed directly in to main. The branch name should be succinct but
relate to what’s being changed; for instance, if you’re fixing a bug in Windows code signing, you might use the branch
name fix-windows-signing. To create a new branch, run:

macOS

Linux

Windows

(venv) $ git checkout -b fix-windows-signing

(venv) $ git checkout -b fix-windows-signing

(venv) C:\...>git checkout -b fix-windows-signing

Running tests and coverage

Briefcase uses tox to manage the testing process and pytest for its own test suite.

The default tox command includes running:

• pre-commit hooks

• towncrier release note check

• documentation linting

• test suite for available Python versions

• code coverage reporting

To run the full test suite, run:

macOS

Linux

Windows

(venv) $ tox

(venv) $ tox

(venv) C:\...>tox

2.2. How-to guides 21

https://tox.wiki/en/latest/
https://docs.pytest.org/en/latest

Briefcase Documentation, Release 0.3.18

The full test suite can take a while to run. You can speed it up considerably by running tox in parallel, by running tox
p (or tox run-parallel). When you run the test suite in parallel, you’ll get less feedback on the progress of the test
suite as it runs, but you’ll still get a summary of any problems found at the end of the test run.

Run tests for multiple versions of Python

By default, many of the tox commands will attempt to run the test suite multiple times, once for each Python version
supported by Briefcase. To do this, though, each of the Python versions must be installed on your machine and available
to tox’s Python discovery process. In general, if a version of Python is available via PATH, then tox should be able to
find and use it.

Run only the test suite

If you’re rapidly iterating on a new feature, you don’t need to run the full test suite; you can run just the unit tests. To
do this, run:

macOS

Linux

Windows

(venv) $ tox -e py

(venv) $ tox -e py

(venv) C:\...>tox -e py

Run a subset of tests

By default, tox will run all tests in the unit test suite. To restrict the test run to a subset of tests, you can pass in any
pytest specifier as an argument to tox. For example, to run only the tests in a single file, run:

macOS

Linux

Windows

(venv) $ tox -e py -- tests/path/to/test_some_test.py

(venv) $ tox -e py -- tests/path/to/test_some_test.py

(venv) C:\...>tox -e py -- tests/path/to/test_some_test.py

22 Chapter 2. Community

https://virtualenv.pypa.io/en/latest/user_guide.html#python-discovery
https://docs.pytest.org/en/latest/how-to/usage.html#specifying-which-tests-to-run
https://docs.pytest.org/en/latest/how-to/usage.html#specifying-which-tests-to-run

Briefcase Documentation, Release 0.3.18

Run the test suite for a specific Python version

By default tox -e py will run using whatever interpreter resolves as python3 on your machine. If you have multiple
Python versions installed, and want to test a specific Python version, you can specify a specific python version to use.
For example, to run the test suite on Python 3.10, run:

macOS

Linux

Windows

(venv) $ tox -e py310

(venv) $ tox -e py310

(venv) C:\...>tox -e py310

A subset of tests can be run by adding -- and a test specification to the command line.

Run the test suite without coverage (fast)

By default, tox will run the pytest suite in single threaded mode. You can speed up the execution of the test suite by
running the test suite in parallel. This mode does not produce coverage files due to complexities in capturing coverage
within spawned processes. To run a single python version in “fast” mode, run:

macOS

Linux

Windows

(venv) $ tox -e py-fast

(venv) $ tox -e py-fast

(venv) C:\...>tox -e py-fast

A subset of tests can be run by adding -- and a test specification to the command line; a specific Python version can be
used by adding the version to the test target (e.g., py310-fast to run fast on Python 3.10).

Code coverage

Briefcase maintains 100% branch coverage in its codebase. When you add or modify code in the project, you must add
test code to ensure coverage of any changes you make.

However, Briefcase targets macOS, Linux, and Windows, as well as multiple versions of Python, so full coverage can-
not be verified on a single platform and Python version. To accommodate this, several conditional coverage rules
are defined in the tool.coverage.coverage_conditional_plugin.rules section of pyproject.toml (e.g.,
no-cover-if-is-windows can be used to flag a block of code that won’t be executed when running the test suite
on Windows). These rules are used to identify sections of code that are only covered on particular platforms or Python
versions.

Of note, coverage reporting across Python versions can be a bit quirky. For instance, if coverage files are produced
using one version of Python but coverage reporting is done on another, the report may include false positives for

2.2. How-to guides 23

Briefcase Documentation, Release 0.3.18

missed branches. Because of this, coverage reporting should always use the oldest version Python used to produce the
coverage files.

Coverage report for host platform and Python version

You can generate a coverage report for your platform and version of Python. For example, to run the test suite and
generate a coverage report on Python3.11, run:

macOS

Linux

Windows

(venv) $ tox -m test311

(venv) $ tox -m test311

(venv) C:\...>tox -m test311

Coverage report for host platform

If all supported versions of Python are available to tox, then coverage for the host platform can be reported by running:

macOS

Linux

Windows

(venv) $ tox p -m test-platform

(venv) $ tox p -m test-platform

(venv) C:\...>tox p -m test-platform

Coverage reporting in HTML

A HTML coverage report can be generated by appending -html to any of the coverage tox environment names, for
instance:

macOS

Linux

Windows

(venv) $ tox -e coverage-platform-html

(venv) $ tox -e coverage-platform-html

(venv) C:\...>tox -e coverage-platform-html

24 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

Add change information for release notes

Briefcase uses towncrier to automate building release notes. To support this, every pull request needs to have a cor-
responding file in the changes/ directory that provides a short description of the change implemented by the pull
request.

This description should be a high level summary of the change from the perspective of the user, not a deep technical
description or implementation detail. It should also be written in past tense (i.e., “Added an option to enable X” or
“Fixed handling of Y”).

See News Fragments for more details on the types of news fragments you can add. You can also see existing examples
of news fragments in the changes/ folder.

Simulating GitHub CI checks locally

To run the same checks that run in CI for the platform, run:

macOS

Linux

Windows

(venv) $ tox p -m ci

(venv) $ tox p -m ci

(venv) C:\...>tox p -m ci

Now you are ready to start hacking! Have fun!

2.2.5 Contributing to the documentation

Here are some tips for working on this documentation. You’re welcome to add more and help us out!

First of all, you should check the reStructuredText (reST) Primer to learn how to write your .rst file.

Create a .rst file

Look at the structure and choose the best category to put your .rst file. Make sure that it is referenced in the index of
the corresponding category, so it will show on in the documentation. If you have no idea how to do this, study the other
index files for clues.

Build documentation locally

To build the documentation locally, set up a development environment.

You’ll also need to install the Enchant spell checking library.

macOS

Linux

Windows

Enchant can be installed using Homebrew:

2.2. How-to guides 25

https://pypi.org/project/towncrier/
https://towncrier.readthedocs.io/en/stable/tutorial.html#creating-news-fragments
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://brew.sh

Briefcase Documentation, Release 0.3.18

(venv) $ brew install enchant

If you’re on an M1 machine, you’ll also need to manually set the location of the Enchant library:

(venv) $ export PYENCHANT_LIBRARY_PATH=/opt/homebrew/lib/libenchant-2.2.dylib

Enchant can be installed as a system package:

Ubuntu 20.04+ / Debian 10+

$ sudo apt-get update
$ sudo apt-get install enchant-2

Fedora

$ sudo dnf install enchant

Arch, Manjaro

$ sudo pacman -Syu enchant

Enchant is installed automatically when you set up your development environment.

Once your development environment is set up, run:

macOS

Linux

Windows

(venv) $ tox -e docs

(venv) $ tox -e docs

(venv) C:\...>tox -e docs

The output of the file should be in the docs/_build/html folder. If there are any markup problems, they’ll raise an
error.

Live documentation preview

To support rapid editing of documentation, Briefcase also has a “live preview” mode:

macOS

Linux

Windows

(venv) $ tox -e docs-live

(venv) $ tox -e docs-live

(venv) C:\...>tox -e docs-live

26 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

This will build the documentation, start a web server to serve the build documentation, and watch the file system for
any changes to the documentation source. If a change is detected, the documentation will be rebuilt, and any browser
viewing the modified page will be automatically refreshed.

Documentation linting

Before committing and pushing documentation updates, run linting for the documentation:

macOS

Linux

Windows

(venv) $ tox -e docs-lint

(venv) $ tox -e docs-lint

(venv) C:\...>tox -e docs-lint

This will validate the documentation does not contain:

• invalid syntax and markup

• dead hyperlinks

• misspelled words

If a valid spelling of a word is identified as misspelled, then add the word to the list in docs/spelling_wordlist.
This will add the word to the spellchecker’s dictionary.

Rebuilding all documentation

To force a rebuild for all of the documentation:

macOS

Linux

Windows

(venv) $ tox -e docs-all

(venv) $ tox -e docs-all

(venv) C:\...>tox -e docs-all

The documentation should be fully rebuilt in the docs/_build/html folder. If there are any markup problems, they’ll
raise an error.

2.2. How-to guides 27

Briefcase Documentation, Release 0.3.18

2.2.6 Internal How-to guides

These guides are for the maintainers of the Briefcase project, documenting internal project procedures.

How to cut a Briefcase release

The release infrastructure for Briefcase is semi-automated, using GitHub Actions to formally publish releases.

This guide assumes that you have an upstream remote configured on your local clone of the Briefcase repository,
pointing at the official repository. If all you have is a checkout of a personal fork of the Briefcase repository, you can
configure that checkout by running:

$ git remote add upstream https://github.com/beeware/briefcase.git

The procedure for cutting a new release is as follows:

1. Check the contents of the upstream repository’s main branch:

$ git fetch upstream
$ git checkout --detach upstream/main

Check that the HEAD of release now matches upstream/main.

2. Ensure that the release notes are up to date. Run:

$ tox -e towncrier -- --draft

to review the release notes that will be included, and then:

$ tox -e towncrier

to generate the updated release notes.

3. Build the documentation to ensure that the new release notes don’t include any spelling errors or markup prob-
lems:

$ tox -e docs-lint,docs

4. Ensure that there is a version branch for the new Briefcase version in every template that Briefcase will use at
runtime:

• briefcase-template

• briefcase-macOS-app-template

• briefcase-macOS-Xcode-template

• briefcase-windows-app-template

• briefcase-windows-VisualStudio-template

• briefcase-linux-appimage-template

• briefcase-linux-flatpak-template

• briefcase-linux-system-template

• briefcase-iOS-Xcode-template

• briefcase-android-gradle-template

• briefcase-web-static-template

28 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

5. Tag the release, and push the branch and tag upstream:

$ git tag v1.2.3
$ git push upstream HEAD:main
$ git push upstream v1.2.3

6. Pushing the tag will start a workflow to create a draft release on GitHub. You can follow the progress of the
workflow on GitHub; once the workflow completes, there should be a new draft release, and an entry on the Test
PyPI server.

Confirm that this action successfully completes. If it fails, there’s a couple of possible causes:

a. The final upload to Test PyPI failed. Test PyPI is not have the same service monitoring as PyPI-proper, so
it sometimes has problems. However, it’s also not critical to the release process; if this step fails, you can
perform Step 6 by manually downloading the “packages” artifact from the GitHub workflow instead.

b. The test apps fail to build. This is likely because you forgot to branch one (or more) of the templates
mentioned in Step 3. If this happens, you can correct the missing template, and re-run the action through
the GitHub Actions GUI.

c. Something else fails in the build process. If the problem can be fixed without a code change to the Briefcase
repository (e.g., a transient problem with build machines not being available), you can re-run the action that
failed through the GitHub Actions GUI. If the fix requires a code change, delete the old tag, make the code
change, and re-tag the release.

7. Create a clean virtual environment, install the new release from Test PyPI, and perform any pre-release testing
that may be appropriate:

$ python3 -m venv testvenv
$. ./testvenv/bin/activate
(testvenv) $ pip install --extra-index-url https://test.pypi.org/simple/␣
→˓briefcase==1.2.3
(testvenv) $ briefcase --version
briefcase 1.2.3
(testvenv) $ #... any other manual checks you want to perform ...

8. Log into ReadTheDocs, visit the Versions tab, and activate the new version. Ensure that the build completes; if
there’s a problem, you may need to correct the build configuration, roll back and re-tag the release.

9. Edit the GitHub release to add release notes. You can use the text generated by towncrier, but you’ll need to
update the format to Markdown, rather than ReST. If necessary, check the pre-release checkbox.

10. Double check everything, then click Publish. This will trigger a publication workflow on GitHub.

11. Wait for the package to appear on PyPI.

Congratulations, you’ve just published a release!

If anything went wrong during steps 4-10, you will need to re-start from step 4 with a new version number. Once the
release has successfully appeared on PyPI (or Test PyPI), it cannot be changed; if you spot a problem in a published
package, you’ll need to tag a completely new release.

2.2. How-to guides 29

https://github.com/beeware/briefcase/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/briefcase/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/briefcase/releases
https://test.pypi.org/project/briefcase/
https://test.pypi.org/project/briefcase/
https://readthedocs.org/projects/briefcase/versions/
https://github.com/beeware/briefcase/actions?query=workflow%3A%22Upload+Python+Package%22
https://pypi.org/project/briefcase/

Briefcase Documentation, Release 0.3.18

Docker X11 Passthrough

Briefcase can use Docker to build apps for Linux distributions other than the distribution you’re currently using. Docker
can also be used to run the app on the foreign distribution, exporting the graphical aspects of the app to your local
display. This document describes how to configure your system to do this.

X Window System Background

Linux distributions use either the X Window System (sometimes called X or X11) or Wayland to manage their graph-
ical displays. X11 is the older of the two; Wayland maintains compatibility with the X11 protocol for backwards
compatibility.

The X11 protocol operates in a client/server framework; any application that wishes to display a window or receive
user input will send and receive commands with an X server.

X Configuration

The location of the X server is declared by the DISPLAY environment variable, normally in the form
HOSTNAME:DISPLAYNUMBER.SCREENNUMBER. If HOSTNAME is absent, it is assumed to be the machine the client is
running on. The SCREENNUMBER is largely historical since all monitors are normally collapsed together in to a single
screen now. Therefore, an expected setting for DISPLAY is :0 for many installations.

While security is relatively weak for X11, there are basic facilities to mitigate unauthenticated access. The XAUTHORITY
environment variable can specify a file path to an xauth database; if XAUTHORITY is not set, there will normally be a
system default file path configured for each user. The xauth database itself is protected by file system access controls
and will contain “cookies” for individual displays that are assigned by the X server for clients to use to facilitate
authentication.

An xauth database authorizing a host named jupiter might look like:

$ xauth list
jupiter/unix: MIT-MAGIC-COOKIE-1 9e9a67185b1fdc0c46e00dc400559873
#ffff#6a757069746572#: MIT-MAGIC-COOKIE-1 9e9a67185b1fdc0c46e00dc400559873

Along with cookie-based authentication, it is also possible to add entities to an allowlist for a display. For instance, some
distributions are configured to allow any process owned by the logged in user access to the display. This is configured
by xhost.

An xhost configuration authorizing a user named brutus might look like:

$ xhost
access control enabled, only authorized clients can connect
SI:localuser:brutus

30 Chapter 2. Community

https://www.x.org/
https://wayland.freedesktop.org/
https://www.x.org/releases/X11R7.7/doc/xproto/x11protocol.html

Briefcase Documentation, Release 0.3.18

X Operation

While authentication is normally enabled for X access, security is mostly bolstered by the allowed methods for clients
to connect. Most systems will only open a UNIX socket to which clients should connect to send and receive messages.
By virtue of file system design, only users on the host machine will have access to this socket. With the introduction
of abstract sockets in Linux, such a socket is also typically made available in tandem with the UNIX socket. The
advantages of an abstract socket is beyond this discussion, though.

Such a UNIX socket connection will be configured for each display for the machine. As with many things in Linux,
UNIX sockets are exposed in the machine via a file in the /tmp/.X11-unix/ directory. The socket files are named for
the number of the DISPLAY they are connected to; so, the file for Display 0 is X0. Therefore, any display can be found
at /tmp/.X11-unix/X#.

Along with a UNIX socket connection, X servers can also listen on a TCP socket on the machine’s network interfaces.
However, since a network connection can easily be reached by other machines, listening on a TCP socket is normally
disabled on most Linux distributions. That said, the X11 standard reserves port numbers starting at port 6000 for X
displays. Therefore, Display 0 is available at port 6000 while Display 99 would be available at port 6099 and so on.

Docker

From the design of X11, it is clear that a Docker container needs access to the socket for the display and the xauth
database for the user.

An example of a well-published method to accomplish this:

$ docker run --rm -it --net host --env DISPLAY ubuntu xeyes

This method assumes:

• the user in the container is root or its ID matches the host user

• xhost is configured to allow any connections from the user

• the X server is running an abstract socket for the display

By virtue of how access control is managed for abstract sockets, the --net host configuration allows access to the
abstract socket for the display inside the container and passing the DISPLAY environment variable through lets the
xeyes application know which display to connect to.

While this strategy works in many environments, the generalized solution is more complicated to accommodate varia-
tions in Docker implementations as well as whether the current display is actually being proxied.

Docker Desktop

The original implementation of Docker is referred to as Docker Engine and leverages many advanced features of Linux
to run processes in highly containerized environments. Docker Desktop, however, effectively runs Docker Engine
inside a lightweight Linux virtual machine (VM) running on the host machine. Therefore, when Docker Desktop runs
a container, it is running it inside of a VM and not directly on the host system as Docker Engine does (albeit in isolation
via containerization).

As an outcome of the design of Docker Desktop, the behavior of interactions between the host machine and Docker
containers can be significantly different. For instance, it is not possible to expose the host machine’s network to a
container via --net host like you can with Docker Engine. While this does change the exact network configuration
that’s exposed to the container in the Docker Desktop VM, it is much different than Docker Engine and abstract sockets
on the host are not available to the container.

2.2. How-to guides 31

Briefcase Documentation, Release 0.3.18

Along with not being possible to expose abstract sockets on the host to a container running via Docker Desktop, it is also
not possible to expose arbitrary UNIX sockets either. Therefore, attempting to bind mount /tmp/.X11-unix/X0, for
instance, in to a Docker Desktop container will not allow processes inside the container to successfully communicate
with the socket. (The Docker team has added support to pass specific sockets such as the socket Docker itself uses, as
well as the SSH agent socket; but exposing arbitrary sockets has been deemed out of scope for now.)

Therefore, since it is not possible to expose a socket for an X display to a container running in Docker Desktop, the X
display will need to be exposed over the network shared by the host and container.

Docker Networking

In Docker Engine, networking is relatively straightforward. On the host, a network interface bridge called docker0 is
installed. This bridge serves to mediate communication among containers as well as between containers and the host.
If the host would like to expose a network-based service to a container, it can bind to a port on docker0 and containers
can connect to it.

In Docker Desktop, however, the Linux VM in which containers run complicates matters. Inside the Linux VM, it’s
largely a similar configuration with a network bridge but the host machine cannot directly interact with this bridge
interface. Instead, the host’s network interface is assigned an address on the bridge similar to how other containers
are. In this way, containers can still connect to network-based services on the host but not through a shared network
interface called docker0.

To help simplify the configurations for applications running inside Docker Desktop containers, the hostname host.
docker.internal will always resolve to an IP address for the host’s network interface and thereby allow access to
network-based services on the host.

Unlike Docker Desktop, Docker Engine cannot intercept DNS requests from containers; therefore, host.docker.
internal must be configured when the container is started. This is accomplished via the --add-host option which
allows mapping a hostname to an arbitrary address for the hostname. This mapping is applied by writing it in the con-
tainer’s /etc/hosts file. Using --add-host, host.docker.internal is mapped to the keyword host-gateway.
This keyword is a special value that the Docker server will replace with an address from which the host will be reachable
within a container whether it is Docker Engine or Docker Desktop starting it.

In conclusion, we can add --add-host host.docker.internal:host-gateway to the options to start a container
and the host network interface will be reachable at host.docker.internal.

Exposing an X Display to a Container

Given the knowledge of the operation of the Docker implementations, we finally have the pieces to expose an X display
to a container. Since it is not possible to expose the display’s socket directly to a container, a TCP proxy is configured
to pass X messages on the network from the container to the socket on the host machine for the display.

TCP Proxy

The socat tool is a widely available program to relay bi-directional data transfer between independent data channels. It
allows running a process on the host to listen on a network port and send any received data to a socket connected to an
X display on the other side.

Creating a TCP proxy for the X display effectively creates a spoofed X display. The proxy is configured to listen on
the TCP port for an unallocated display; the port number will be 6000 + the number of the display. Additionally, the
proxy is configured to listen on all network interfaces since identifying the exact interface that will be available within
the container is non-trivial.

The other side of the proxy is connected to the socket for the X display. The socket, though, for the display may actually
be another TCP socket; this will be the case if the environment is currently configured for X11 forwarding over SSH, as

32 Chapter 2. Community

https://repo.or.cz/socat.git

Briefcase Documentation, Release 0.3.18

discussed below. In most cases, though, the socket will be the UNIX socket for the display in the /tmp/.X11-unix/
directory.

X Authentication for the Proxied X Display

Authentication for X displays is managed in xauth database files. The xauth program allows for reading and writing
the database. The database is relatively simple mapping of display information to a cookie. When a client wants to
establish a connection for a display, it queries the database for the display and receives the cookie back.

Since the proxy creates a spoofed display, a new xauth database needs to be created for the spoofed display using the
authentication afforded to the user for the current display.

To create a new database, you need to:

• Extract the cookie for the current display

• Create a new database file

• Add an entry for the spoofed display using the extracted cookie to the new database

• Rewrite the hostname of the entry that was just created to be “FamilyWild” (a name reserved by the Xauth
specification to match all displays)

This new xauth database file is set in the XAUTHORITY environment variable for the container so any X connections
use it.

The hostname must be updated in the new database file because when the new entry is created, the xauth program will
associate the host machine’s hostname with the display. In the container, though, the DISPLAY variable will be using
host.docker.internal as the hostname for the display. If it is not updated, then the authentication cannot be used.
Furthermore, the xauth program will not allow creating authentication entries for displays that do not actually exist.
So, we manually update the hostname of the entry to a wildcard value such that queries for the display number will
return the authentication regardless of the hostname of the query.

X11 Forwarding over SSH

A common practice is to forward X11 communication from a remote machine to the local machine when using SSH.
Therefore, when someone establishes an SSH connection to another machine and runs Briefcase, this X11 passthrough
mechanism should passthrough the X11 forwarding for SSH in to the Docker container.

When X11 forwarding is configured for SSH, there are multiple channels established between the local and remote
machine. The primary channel facilitates the interactive shell session; additionally, though, SSH sets up another channel
for the X communication.

It accomplishes X11 forwarding in much the same way that Briefcase is proxying X communication from the Docker
container to the host. On the remote machine, the X11 channel is bound to the TCP port for a spoofed display and
creates a new entry in the user’s xauth database for the display. Unlike Briefcase’s proxy, the SSH proxy actively
modifies some of the X messages; it will verify connection attempts use the authentication created in the database by
SSH and will replace it with the actual authentication used on the local machine.

Since Briefcase will first connect to a TCP socket for a display, it will find the spoofed display created by SSH and
create the proxy such that it connects to that TCP socket. In this way, the container sends X messages to the proxy, the
proxy send them to the SSH X11 channel, and SSH translates them for the X display on the local machine.

2.2. How-to guides 33

https://www.x.org/archive/current/doc/man/man7/Xsecurity.7.xhtml
https://www.x.org/archive/current/doc/man/man7/Xsecurity.7.xhtml

Briefcase Documentation, Release 0.3.18

2.2.7 Publishing your app

Some Briefcase platforms are linked to app distribution systems. This documentation covers how to publish your app
to the appropriate distribution system.

Android

The Google Play Store is the most widely-used Android app store. This guide focuses on how to distribute a BeeWare
app on the Google Play Store.

Build the app in release mode

Use Briefcase to build a release bundle for your application:

macOS

Linux

Windows

(venv) $ briefcase package android
[hello-world] Building Android App Bundle and APK in release mode...
...
[hello-world] Packaged dist/Hello World-1.0.0.aab

(venv) $ briefcase package android
[hello-world] Building Android App Bundle and APK in release mode...
...
[hello-world] Packaged dist/Hello World-1.0.0.aab

(venv) C:\...>briefcase package android
[hello-world] Building Android App Bundle and APK in release mode...
...
[hello-world] Packaged dist\Hello World-1.0.0.aab

This will result in an Android App Bundle file being generated. An Android App Bundle is a publishing format that
includes all your app’s compiled code and resources.

AAB and APK

APK (Android Package) files can be directly installed on a device. AAB is a newer format that simplifies the process of
uploading your app to the Play Store, allows Google to manage the signing process, and allows the APK that is installed
on your end-user’s device to be smaller.

34 Chapter 2. Community

https://developer.android.com/guide/app-bundle

Briefcase Documentation, Release 0.3.18

Sign the Android App Bundle

Note: Before you sign the APK files, you need to create a code signing identity.

The Google Play Store requires that the Android App Bundle is signed before it is uploaded, using the Java jarsigner
tool.

In this example below, we assume your code signing identity is stored in upload-key-helloworld.jks under .android
within your home folder. We also assume that the app’s formal name is Hello World. You will need to change the path
to the AAB file based on your app’s formal name.

macOS

Linux

Windows (cmd)

Windows (PowerShell)

$ ~/Library/Caches/org.beeware.briefcase/tools/java/Contents/Home/bin/jarsigner -verbose␣
→˓-sigalg SHA1withRSA -digestalg SHA1 -keystore ~/.android/upload-key-helloworld.jks
→˓"dist/Hello World-1.0.0.aab" upload-key -storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb
signing: base/native.pb
signing: base/resources.pb

>>> Signer
X.509, CN=Upload Key
[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

$ ~/.cache/briefcase/tools/java/bin/jarsigner -verbose -sigalg SHA1withRSA -digestalg␣
→˓SHA1 -keystore ~/.android/upload-key-helloworld.jks "dist/Hello World-1.0.0.aab"␣
→˓upload-key -storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb

(continues on next page)

2.2. How-to guides 35

Briefcase Documentation, Release 0.3.18

(continued from previous page)

signing: base/native.pb
signing: base/resources.pb

>>> Signer
X.509, CN=Upload Key
[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

C:\...>%LOCALAPPDATA%\BeeWare\briefcase\Cache\tools\java\bin\jarsigner.exe -verbose -
→˓sigalg SHA1withRSA -digestalg SHA1 -keystore %HOMEPATH%\.android\upload-key-helloworld.
→˓jks "dist\Hello World-1.0.0.aab" upload-key -storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb
signing: base/native.pb
signing: base/resources.pb

>>> Signer
X.509, CN=Upload Key
[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

PS C:\...> & "$env:LOCALAPPDATA\BeeWare\briefcase\Cache\tools\java\bin\jarsigner.exe" -
→˓verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore "$env:HOMEPATH\.android\upload-
→˓key-helloworld.jks" "android\gradle\Hello World\app\build\outputs\bundle\release\app-
→˓release.aab" upload-key -storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb
signing: base/native.pb
signing: base/resources.pb

>>> Signer
X.509, CN=Upload Key

(continues on next page)

36 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

(continued from previous page)

[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

You can safely ignore the warning about the signer’s certificate being self-signed. Google will manage the process of
signing the app with a verified certificate when you upload your app for distribution.

Add the app to the Google Play store

To publish to the Google Play store, you will need a Google Play Developer account, which costs 25 USD. You will then
need to provide information for your app’s store listing including an icon and screenshots, upload the app to Google,
and finally roll the app out to production.

Register for a Google Play Developer account

Registering for a Google Play Developer account requires a Google Account. You will need to pay registration fee and
accept an agreement in the process.

To check if you already have a Google Play Developer account, you can visit the Google Play console. If you see a
button to Publish an Android App on Google Play or a button to Create Application, you can skip this step.

To create your Google Play developer account, pay the fee, and review the agreements, follow Google’s documentation.

Create a listing

Visit the Google Play console. and log in. You will see a button labeled Create App; click this button.

Fill out the details for your app. We suggest using your app’s formal name (as defined in pyproject.toml as the App
name; the other details relate to the listing and legal compliance. At the bottom of of the page, press Create App.

This will take you to Store Listing section of your app. You will need to provide a short app description (up to 80
characters) and a full description (up to 4000 characters). Your app metadata may be helpful here.

You will also need to provide a collection of assets that will be used to promote your application:

• A 512x512px icon. This will be the icon that appears in the Play Store. It should match the icon you set on the
application itself.

• At least 2 screen screenshots of the app. Google recommends using a screenshot without framing. One way
to capture such a screenshot is with the Android emulator’s screenshot functionality (the camera icon on the
simulator controls). This allows your screenshot to contain just what appears on the screen rather than a picture
of the virtual device. This will store a file in your Desktop folder.

Screenshots must be at least 320px on their smallest dimension, no larger than 3480px on their largest dimension,
and can’t have an aspect ratio more extreme than 2:1. A screenshot from the Android emulator typically fulfills
these requirements.

• A 1024x500px feature graphic. A feature graphic visually represents the purpose of the app or your logo and
can optionally include a screenshot of the app in use, typically including device framing.

2.2. How-to guides 37

https://play.google.com/console/about/
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en
https://play.google.com/console/about/
https://developer.android.com/distribute/marketing-tools/device-art-generator

Briefcase Documentation, Release 0.3.18

Google Play supports optional graphic assets including promo videos, TV banners, and 360 degree stereoscopic images.
See also Google’s advice on graphic assets.

Once you’ve completed the store listing, you’ll need to fill out a range of other details about your app, including the
category where it should appear in the Play Store, pricing details, details about the app’s content and its suitability
for children, and contact details for you as a developer. The navigation pane (typically on the left side of the screen)
contains grayed out check marks covering all the sections with required details. Visit each of these sections in turn;
when you have met the requirements of each section, the check mark will turn green. Once all the checkmarks are
green, you’re ready to release your app.

Create a release

In the left navigation bar, select Production (in the “Release” grouping), Then select Create Release. If prompted to
enable App Signing by Google Play, click Continue.

Non-production releases

The Play Store also supports releasing your app for internal, alpha and beta testing. Google’s documentation contains
more details about creating test releases.

In an earlier section of this tutorial, we used briefcase publish and jarsigner to create a signed Android App
Bundle file. It is stored in the dist folder of your project. Upload this file to the Google Play console in the App
Bundles section, fill out the Release notes section of the app, and click Next.

Google will then check that you’ve filled out all the necessary compliance details for your app; if there are any missing,
you’ll be prompted to complete those details.

Once you’ve completed those details, select Publishing Overvie from the navigation sidebar. You should see “Changes
ready to send for review”, and a button marked Send for review. Click this button.

The Google Play Store will now review your app. You will be emailed if any updates are required; otherwise, after a
day or two, your app will be rolled out to the Play Store.

Publish an update

At some point, you’ll want to publish an updated version of your application. Generate a fresh AAB file, signed with
the same certificate as your original release. Then log into the Play Store console, and select your application. Select
Release Management in the navigation bar, then App Releases.

At this point, the release process is the same as it was for your initial release; create a release, upload your AAB file,
and submit the application for roll out.

iOS

This guide will walk you through the process of publishing an app to the Apple App Store.

To distribute an app on the iOS App Store, you’ll need to enroll in the Apple Developer Program. You don’t need to
generate any of the certificates described on that page - you just need an Apple ID registered in the developer program.

Once you’ve signed up for an Apple ID account, open the Xcode Settings dialog, and add your account under the
“Accounts” tab.

38 Chapter 2. Community

https://support.google.com/googleplay/android-developer/answer/9866151
https://support.google.com/googleplay/android-developer/answer/9845334
https://support.google.com/googleplay/android-developer/answer/9845334

Briefcase Documentation, Release 0.3.18

Open the app in Xcode

Use Briefcase to open the Xcode project associated with your project.

(venv) $ briefcase open iOS

Run the app in the simulator

In order to submit your app to the App Store, you will need to provide a range of screenshots:

• 3-5 screenshots running on a 6.5” iPhone (e.g., iPhone 14 Plus)

• 3-5 screenshots running on a 5.5” iPhone (e.g., iPhone 8 Plus)

• 3-5 screenshots running on an 12.9” iPad Pro (Gen 6; without a physical home button)

• 3-5 screenshots running on an 12.9” iPad Pro (Gen 2; with a physical home button)

• (optionally) 3-5 screenshots running on a 6.7” iPhone (e.g., iPhone 14 Pro Max)

The iOS and iPad simulators have a “Save Screen” button in their title bar; this will capture screenshots of the necessary
size.

You can change simulator device by clicking on the device target int the top bar of the Xcode window. Click on the
device name, and select the device from the list. If the device you need doesn’t exist on this list, click on “Manage Run
Destinations” to add a simulator for that device type.

Produce an App archive

Select the root node of the Xcode project browser (it should be the formal name of your app), then select the Signing
& Capabilities tab from configuration options that are displayed. The “Team” option under “Signing” will be listed
as “None”; select the name of the development team that will sign the app. If there’s no team listed, select “Add an
Account”, and choose one of the teams that is associated with your Apple ID.

In the top bar of the Xcode window, change the target device from a simulator to “Any iOS device”. Clean the build
products folder (select “Clean Build Folder. . . ” from the Product menu), then build an archive by selecting “Archive”
from the Product menu. This will perform a clean build of your application, build an archive, and open a new window,
called the Organizer. It should list a freshly created archive of your app, with the current version number.

Select the archive, and click the “Distribute App” on the right side of the Organizer window. This will display a wizard
that will ask details about your app; accept the default values; once the wizard completes, your app binary has been
sent to the App Store for inclusion in a release.

After a few minutes, you should receive an email notifying you that the binary has been processed.

Create an App Store entry

Log into App Store Connect, click on “My Apps”, then on + to add an app.

Fill out the form for a new app. If you’ve run the app in Xcode, the Bundle ID for your app should be listed; select
it from the list. You must also create an SKU for your app - we suggest ios-<appname>, substituting the short app
name that you selected when you initially created your app. So, if you’ve created an app with a formal name of “Hello
World”, with an app name of helloworld, and a bundle of org.beeware, you should have a Bundle ID of org.
beeware.helloworld; we’d suggest an SKU of ios-helloworld.

You’ll then be shown another page for app details, including:

2.2. How-to guides 39

https://appstoreconnect.apple.com

Briefcase Documentation, Release 0.3.18

• Primary and Secondary Category.

• Screenshots

• Promotional Text

• Description

• Keywords

• Support URL

• Marketing URL

• A URL for your app’s privacy policy

• Version number

• The name of the copyright holder

Under the “Build” section, you’ll be able to select the archive that you uploaded through Xcode.

The “App Review Information” section allows you to provide contact details in case Apple has questions during the
review process. If your app requires a login, you must provide a set of credentials so that Apple can log in. You can
also provide any additional notes to assist the reviewer.

Click on “Pricing and Availability” tab on the sidebar, and set up the pricing schedule and availability for your app.

Then, click on “App Privacy”, and click on “Get Started”; this will ask you a series of questions about the information
about users that your app collects.

Once these details have all been provided, click on the “1.0 Prepare for Submission” link in the sidebar. On the right
of the screen, click on “Add for Review”; this will ask some final questions, and provide one more button “Submit for
Review”. Click that button, and you’re done!

2.3 About Briefcase

2.3.1 Frequently Asked Questions

What version of Python does Briefcase support?

Python 3.8 or higher.

What platforms does Briefcase support?

Briefcase currently has support for:

• macOS (producing DMG files, or raw .app files)

• Linux (producing system packages, AppImage files or Flatpaks)

• Windows (producing MSI installers)

• iOS (producing Xcode projects)

• Android (producing Gradle projects)

Support for other some other operating systems (e.g., tvOS, watchOS, WearOS, and the web) are on our road map.

Briefcase’s platform support is built on a plugin system, so if you want to add support for a custom platform, you can
do so; or, you can contribute the backend to Briefcase itself.

40 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

How do I detect if my app is running in a Briefcase-packaged container?

Briefcase adds a PEP566 metadata file when it installs your app’s code. The metadata can be retrieved at runtime
as described in the Accessing Briefcase packaging metadata at runtime how-to. You can determine if your app was
packaged with Briefcase by testing for the existence of the Briefcase-Version tag:

in_briefcase = 'Briefcase-Version' in metadata

Can I use third-party Python packages in my app?

Yes! Briefcase uses pip to install third-party packages into your app bundle. As long as the package is available on
PyPI, or you can provide a wheel file for the package, it can be added to the requires declaration in your pyproject.
toml file and used by your app at runtime.

If the package is pure-Python (i.e., it does not contain a binary library), that’s all you need to do.

If the package contains a binary component, you’ll need to ensure that a binary wheel is available for the platform
you’re targeting:

• macOS, Linux, Windows: Binary wheels are hosted on PyPI.

• Android: See the Android platform documentation.

• iOS: See the iOS platform documentation.

• Web: Binary wheel support is currently limited to those provided by the Pyodide project.

2.3.2 The Briefcase Developer and User community

Briefcase is part of the BeeWare suite. You can talk to the community through:

• @beeware@fosstodon.org on Mastodon

• Discord

• BeeWare Getting Help page

Code of Conduct

The BeeWare community has a strict Code of Conduct. All users and developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a violation of this code, please contact the
project founder Russell Keith-Magee.

Contributing

If you experience problems with Briefcase, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

2.3. About Briefcase 41

https://peps.python.org/pep-0566/
https://pypi.org
https://pyodide.org/en/stable/usage/packages-in-pyodide.html
https://beeware.org
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/
https://beeware.org/community/getting-help/
https://beeware.org/contributing/index.html
mailto:russell@keith-magee.com
https://github.com/beeware/briefcase/issues
https://github.com/beeware/briefcase
https://github.com/beeware/briefcase/pulls

Briefcase Documentation, Release 0.3.18

2.3.3 Success Stories

Want to see examples of Briefcase in use? Here’s some:

• Travel Tips is an app in the iOS App Store that was packaged for distribution using Briefcase.

• Mu is a simple code editor for beginner programmers. It uses Briefcase to prepare a macOS installer.

• Napari is a multi-dimensional image viewer for python. It uses Briefcase to prepare bundled Windows, MacOS,
and Linux installers.

2.3.4 Release History

0.3.18 (2024-05-06)

Features

• Existing projects with a pyproject.toml configuration can now be converted into Briefcase apps using the
briefcase convert command. (#1202)

• Apps packaged as AppImages are no longer dependent on libcrypt.so.1. (#1383)

• The briefcase run command now supports the --target option to run Linux apps from within Docker for
other distributions. (#1603)

• The hints and recommendations that Docker prints in the console are now silenced. (#1635)

• In non-interactive environments, such as CI, a message is now printed to signify a task has begun where an
animated bar would be displayed in interactive console sessions. (#1649)

• Additional options can now be passed to the docker build command for building native Linux packages and
AppImages via the --Xdocker-build argument. (#1661)

• The contents of pyproject.toml is now included in the log file. (#1674)

• When an app runs on an Android device or emulator, the logging output is now colored. (#1676)

• When deep debug is activated via -vv, pip now installs requirements for the app with verbose logging. (#1708)

• The listing of filenames for updating permissions for building native Linux packages is now only shown when
verbose logging is enabled via -v. (#1720)

• When a platform supports a splash screen, that splash screen will be generated automatically based on the app
icon, rather than requiring additional configuration. (#1737)

• New projects for Toga on GTK3 now recommend using gir1.2-webkit2-4.1 instead of gir1.2-webkit2-4.
0 for WebView support. (#1748)

Bugfixes

• When Briefcase can’t find rpmbuild on an RPM-based system, the message giving install instructions now uses
the correct package name. (#1638)

• Creating new projects is now compatible with cookiecutter v2.6.0. (#1663)

• The minimum version of pip was bumped to 23.1.2 to ensure compatibility with Python 3.12. (#1681)

• On Windows, the Android emulator will always open without needing to press CTRL-C. (#1687)

• A spurious Android emulator named @INFO will no longer be included in the list of available emulators. (#1697)

42 Chapter 2. Community

https://apps.apple.com/au/app/travel-tips/id1336372310
https://codewith.mu
https://napari.org/
https://github.com/beeware/briefcase/issues/1202
https://github.com/beeware/briefcase/issues/1383
https://github.com/beeware/briefcase/issues/1603
https://github.com/beeware/briefcase/issues/1635
https://github.com/beeware/briefcase/issues/1649
https://github.com/beeware/briefcase/issues/1661
https://github.com/beeware/briefcase/issues/1674
https://github.com/beeware/briefcase/issues/1676
https://github.com/beeware/briefcase/issues/1708
https://github.com/beeware/briefcase/issues/1720
https://github.com/beeware/briefcase/issues/1737
https://github.com/beeware/briefcase/issues/1748
https://github.com/beeware/briefcase/issues/1638
https://github.com/beeware/briefcase/issues/1663
https://github.com/beeware/briefcase/issues/1681
https://github.com/beeware/briefcase/issues/1687
https://github.com/beeware/briefcase/issues/1697

Briefcase Documentation, Release 0.3.18

• The configuration generated for iOS apps declaring geolocation permissions has been corrected. (#1713)

• When using -r/--update-requirements for building for Android, the app’s requirements are always rein-
stalled now. (#1721)

• When creating a new project, the validation for App Name now rejects all non-ASCII values. (#1762)

• Packages created for OpenSUSE now depend on libcanberra-gtk3-module instead of
libcanberra-gtk3-0. (#1774)

Backward Incompatible Changes

• WiX v3.14.1 is now used to package Windows apps. Run briefcase upgrade wix to start using this version.
(#1707)

• Java JDK 17.0.11+9 is now used to package Android apps. Use briefcase upgrade java to update your
Briefcase-installed JDK instance to this version. (#1736)

• The splash configuration option will no longer be honored. Splash screens are now generated based on the icon
image. (#1737)

• iOS apps now require 640px, 1280px and 1920px icon image. (#1737)

• Android apps now require an adaptive variant for icons. This requires 108px, 162px, 216px, 324px and 432px
images with a transparent background. The Android square icon variant requires additional 320px, 480px,
640px, 960px and 1280px images. (#1737)

Documentation

• The documentation contribution guide was updated to use a more authoritative reStructuredText reference.
(#1695)

• The README badges were updated to display correctly on GitHub. (#1763)

Misc

• #1428, #1495, #1637, #1639, #1642, #1643, #1644, #1645, #1646, #1652, #1653, #1656, #1657, #1658, #1659,
#1660, #1666, #1671, #1672, #1679, #1683, #1684, #1686, #1689, #1690, #1691, #1692, #1694, #1699, #1700,
#1701, #1702, #1710, #1711, #1712, #1716, #1717, #1722, #1723, #1725, #1730, #1731, #1732, #1741, #1742,
#1743, #1744, #1745, #1752, #1753, #1754, #1756, #1757, #1758, #1759, #1760, #1761, #1766, #1769, #1775,
#1776

0.3.17 (2024-02-06)

Features

• Android apps are now able to customize the libraries included in the app at build time. (#485)

• App permissions can now be declared as part of an app’s configuration. (#547)

• The -C/--config option can now be used to override app settings from the command line. (#1115)

• The verbosity flag, -v, was expanded to support three levels of logging verbosity. (#1501)

• Briefcase now supports GUI bootstrap plugins to customize how new projects are created. (#1524)

2.3. About Briefcase 43

https://github.com/beeware/briefcase/issues/1713
https://github.com/beeware/briefcase/issues/1721
https://github.com/beeware/briefcase/issues/1762
https://github.com/beeware/briefcase/issues/1774
https://github.com/beeware/briefcase/issues/1707
https://github.com/beeware/briefcase/issues/1736
https://github.com/beeware/briefcase/issues/1737
https://github.com/beeware/briefcase/issues/1737
https://github.com/beeware/briefcase/issues/1737
https://github.com/beeware/briefcase/issues/1695
https://github.com/beeware/briefcase/issues/1763
https://github.com/beeware/briefcase/issues/1428
https://github.com/beeware/briefcase/issues/1495
https://github.com/beeware/briefcase/issues/1637
https://github.com/beeware/briefcase/issues/1639
https://github.com/beeware/briefcase/issues/1642
https://github.com/beeware/briefcase/issues/1643
https://github.com/beeware/briefcase/issues/1644
https://github.com/beeware/briefcase/issues/1645
https://github.com/beeware/briefcase/issues/1646
https://github.com/beeware/briefcase/issues/1652
https://github.com/beeware/briefcase/issues/1653
https://github.com/beeware/briefcase/issues/1656
https://github.com/beeware/briefcase/issues/1657
https://github.com/beeware/briefcase/issues/1658
https://github.com/beeware/briefcase/issues/1659
https://github.com/beeware/briefcase/issues/1660
https://github.com/beeware/briefcase/issues/1666
https://github.com/beeware/briefcase/issues/1671
https://github.com/beeware/briefcase/issues/1672
https://github.com/beeware/briefcase/issues/1679
https://github.com/beeware/briefcase/issues/1683
https://github.com/beeware/briefcase/issues/1684
https://github.com/beeware/briefcase/issues/1686
https://github.com/beeware/briefcase/issues/1689
https://github.com/beeware/briefcase/issues/1690
https://github.com/beeware/briefcase/issues/1691
https://github.com/beeware/briefcase/issues/1692
https://github.com/beeware/briefcase/issues/1694
https://github.com/beeware/briefcase/issues/1699
https://github.com/beeware/briefcase/issues/1700
https://github.com/beeware/briefcase/issues/1701
https://github.com/beeware/briefcase/issues/1702
https://github.com/beeware/briefcase/issues/1710
https://github.com/beeware/briefcase/issues/1711
https://github.com/beeware/briefcase/issues/1712
https://github.com/beeware/briefcase/issues/1716
https://github.com/beeware/briefcase/issues/1717
https://github.com/beeware/briefcase/issues/1722
https://github.com/beeware/briefcase/issues/1723
https://github.com/beeware/briefcase/issues/1725
https://github.com/beeware/briefcase/issues/1730
https://github.com/beeware/briefcase/issues/1731
https://github.com/beeware/briefcase/issues/1732
https://github.com/beeware/briefcase/issues/1741
https://github.com/beeware/briefcase/issues/1742
https://github.com/beeware/briefcase/issues/1743
https://github.com/beeware/briefcase/issues/1744
https://github.com/beeware/briefcase/issues/1745
https://github.com/beeware/briefcase/issues/1752
https://github.com/beeware/briefcase/issues/1753
https://github.com/beeware/briefcase/issues/1754
https://github.com/beeware/briefcase/issues/1756
https://github.com/beeware/briefcase/issues/1757
https://github.com/beeware/briefcase/issues/1758
https://github.com/beeware/briefcase/issues/1759
https://github.com/beeware/briefcase/issues/1760
https://github.com/beeware/briefcase/issues/1761
https://github.com/beeware/briefcase/issues/1766
https://github.com/beeware/briefcase/issues/1769
https://github.com/beeware/briefcase/issues/1775
https://github.com/beeware/briefcase/issues/1776
https://github.com/beeware/briefcase/issues/485
https://github.com/beeware/briefcase/issues/547
https://github.com/beeware/briefcase/issues/1115
https://github.com/beeware/briefcase/issues/1501
https://github.com/beeware/briefcase/issues/1524

Briefcase Documentation, Release 0.3.18

• GitPython’s debug logging is now included in deep debug output. (#1529)

• RCEdit v2.0.0 is now used to build Windows apps. Run briefcase upgrade to use this latest version. (#1543)

• The Flatpak runtimes for new projects were updated. org.freedesktop.Platform will now default to 23.08;
org.gnome.Platform will now default to 45; and org.kde.Platform will now default to 6.6. (#1545)

• When creating new projects with the briefcase new command, project configuration overrides can be specified
via the -Q command line argument. For instance, a specific license can be specified with -Q "license=MIT
license". (#1552)

• New virtual devices for the Android emulator are created using the Pixel 7 Pro skin. (#1554)

• The web server for running static web projects now falls back to a system allocated port if the requested port is
already in use. (#1561)

• Flatpaks are now created with permissions to access the GPU and sound devices. (#1563)

• AppImages can now be built for the ARM architecture. (#1564)

• Apps can now specify a primary color (for both light and dark modes), and an accent color. If the platform allows
apps to customize color use, these colors will be used to style the app’s presentation. (#1566)

• The version of PursuedPyBear for new projects was bumped from 1.1 to 3.2.0. (#1592)

• Python 3.12 is now supported on Android. (#1596)

• Android apps can now specify the base theme used to style the application. (#1610)

• The Java JDK was upgraded from 17.0.8.1+1 to 17.0.10+7. Run briefcase upgrade java to upgrade existing
Briefcase installations. (#1611)

• When the Android emulator fails to start up properly, users are now presented with additional resources to help
resolve any issues. (#1630)

Bugfixes

• When a custom Briefcase template from a git repository is used to create an app, Briefcase now ensures that git
repository is always used. (#1158)

• The filter for iOS build warnings was improved to catch messages from Xcode 15.0.1. (#1507)

• When merging dependencies on macOS, file permissions are now preserved. (#1510)

• flatpak-builder 1.3+ can now be correctly identified. (#1513)

• The BeeWare icon of Brutus is now used as the runtime icon for new projects created with PyGame. (#1532)

• Linux System RPM packaging for openSUSE Tumbleweed no longer errors with FileNotFoundError. (#1595)

• Any ANSI escape sequences or console control codes are now stripped in all output captured in the Briefcase
log file. (#1604)

• The detection of physical Android devices on macOS was made more resilient. (#1627)

44 Chapter 2. Community

https://github.com/beeware/briefcase/issues/1529
https://github.com/beeware/briefcase/issues/1543
https://github.com/beeware/briefcase/issues/1545
https://github.com/beeware/briefcase/issues/1552
https://github.com/beeware/briefcase/issues/1554
https://github.com/beeware/briefcase/issues/1561
https://github.com/beeware/briefcase/issues/1563
https://github.com/beeware/briefcase/issues/1564
https://github.com/beeware/briefcase/issues/1566
https://github.com/beeware/briefcase/issues/1592
https://github.com/beeware/briefcase/issues/1596
https://github.com/beeware/briefcase/issues/1610
https://github.com/beeware/briefcase/issues/1611
https://github.com/beeware/briefcase/issues/1630
https://github.com/beeware/briefcase/issues/1158
https://github.com/beeware/briefcase/issues/1507
https://github.com/beeware/briefcase/issues/1510
https://github.com/beeware/briefcase/issues/1513
https://github.com/beeware/briefcase/issues/1532
https://github.com/beeware/briefcase/issues/1595
https://github.com/beeware/briefcase/issues/1604
https://github.com/beeware/briefcase/issues/1627

Briefcase Documentation, Release 0.3.18

Backward Incompatible Changes

• The use of AppImage as an output format now generates a warning. (#1500)

• Support for creating new projects using PySide2 has been removed. Briefcase’s release testing will no longer
explicitly verify compatibility with PySide2. (#1524)

• The Flatpak build process no longer strips binaries included in third-party (e.g. PyPI) packages that are bundled
with the app. (#1540)

• New projects will now use manylinux_2_28 instead of manylinux2014 to create AppImages in Docker.
(#1564)

• It is highly recommended that Android applications add a definition for build_gradle_dependencies to their
app configuration. A default value will be used if this option is not explicitly provided. Refer to the Android
documentation for the default value that will be used. (#1610)

Documentation

• The common options available to every command have now been documented. (#1517)

Misc

• #1504, #1505, #1506, #1515, #1516, #1518, #1519, #1526, #1527, #1533, #1534, #1535, #1536, #1538, #1541,
#1548, #1549, #1550, #1551, #1555, #1556, #1557, #1560, #1562, #1567, #1568, #1569, #1571, #1575, #1576,
#1579, #1582, #1585, #1586, #1589, #1590, #1597, #1606, #1607, #1613, #1614, #1615, #1618, #1621, #1622,
#1623, #1624, #1628, #1632, #1633

0.3.16 (2023-10-20)

Features

• Support for less common environments, such as Linux on ARM, has been improved. Error messages for unsup-
ported platforms are now more accurate. (#1360)

• Tool verification for Java, Android SDK, and WiX have been improved to provide more informative errors and
debug logging. (#1382)

• A super verbose logging mode was added (enabled using -vv). This turns on all Briefcase internal logging, but
also enables verbose logging for all the third-party tools that Briefcase invokes. (#1384)

• Briefcase now uses Android SDK Command-Line Tools v9.0. If an externally-managed Android SDK is being
used, it must provide this version of Command-Line Tools. Use the SDK Manager in Android Studio to ensure
it is installed. (#1397)

• Support for OpenSuSE Linux distributions was added. (#1416)

• iOS apps are no longer rejected by the iOS App Store for packaging reasons. (#1439)

• The Java JDK version was upgraded to 17.0.8.1+1. (#1462)

• macOS apps can now be configured to produce single platform binaries, or binaries that will work on both x86_64
and ARM64. (#1482)

2.3. About Briefcase 45

https://github.com/beeware/briefcase/issues/1500
https://github.com/beeware/briefcase/issues/1524
https://github.com/beeware/briefcase/issues/1540
https://github.com/beeware/briefcase/issues/1564
https://briefcase.readthedocs.io/en/latest/reference/platforms/android/gradle.html#build-gradle-dependencies
https://briefcase.readthedocs.io/en/latest/reference/platforms/android/gradle.html#build-gradle-dependencies
https://github.com/beeware/briefcase/issues/1610
https://github.com/beeware/briefcase/issues/1517
https://github.com/beeware/briefcase/issues/1504
https://github.com/beeware/briefcase/issues/1505
https://github.com/beeware/briefcase/issues/1506
https://github.com/beeware/briefcase/issues/1515
https://github.com/beeware/briefcase/issues/1516
https://github.com/beeware/briefcase/issues/1518
https://github.com/beeware/briefcase/issues/1519
https://github.com/beeware/briefcase/issues/1526
https://github.com/beeware/briefcase/issues/1527
https://github.com/beeware/briefcase/issues/1533
https://github.com/beeware/briefcase/issues/1534
https://github.com/beeware/briefcase/issues/1535
https://github.com/beeware/briefcase/issues/1536
https://github.com/beeware/briefcase/issues/1538
https://github.com/beeware/briefcase/issues/1541
https://github.com/beeware/briefcase/issues/1548
https://github.com/beeware/briefcase/issues/1549
https://github.com/beeware/briefcase/issues/1550
https://github.com/beeware/briefcase/issues/1551
https://github.com/beeware/briefcase/issues/1555
https://github.com/beeware/briefcase/issues/1556
https://github.com/beeware/briefcase/issues/1557
https://github.com/beeware/briefcase/issues/1560
https://github.com/beeware/briefcase/issues/1562
https://github.com/beeware/briefcase/issues/1567
https://github.com/beeware/briefcase/issues/1568
https://github.com/beeware/briefcase/issues/1569
https://github.com/beeware/briefcase/issues/1571
https://github.com/beeware/briefcase/issues/1575
https://github.com/beeware/briefcase/issues/1576
https://github.com/beeware/briefcase/issues/1579
https://github.com/beeware/briefcase/issues/1582
https://github.com/beeware/briefcase/issues/1585
https://github.com/beeware/briefcase/issues/1586
https://github.com/beeware/briefcase/issues/1589
https://github.com/beeware/briefcase/issues/1590
https://github.com/beeware/briefcase/issues/1597
https://github.com/beeware/briefcase/issues/1606
https://github.com/beeware/briefcase/issues/1607
https://github.com/beeware/briefcase/issues/1613
https://github.com/beeware/briefcase/issues/1614
https://github.com/beeware/briefcase/issues/1615
https://github.com/beeware/briefcase/issues/1618
https://github.com/beeware/briefcase/issues/1621
https://github.com/beeware/briefcase/issues/1622
https://github.com/beeware/briefcase/issues/1623
https://github.com/beeware/briefcase/issues/1624
https://github.com/beeware/briefcase/issues/1628
https://github.com/beeware/briefcase/issues/1632
https://github.com/beeware/briefcase/issues/1633
https://github.com/beeware/briefcase/pull/1360
https://github.com/beeware/briefcase/pull/1382
https://github.com/beeware/briefcase/issues/1384
https://github.com/beeware/briefcase/pull/1397
https://github.com/beeware/briefcase/issues/1416
https://github.com/beeware/briefcase/pull/1439
https://github.com/beeware/briefcase/pull/1462
https://github.com/beeware/briefcase/issues/1482

Briefcase Documentation, Release 0.3.18

Bugfixes

• Build warnings caused by bugs in Xcode that can be safely ignored are now filtered out of visible output. (#377)

• The run command now ensures Android logging is shown when the datetime on the device is different from the
host machine. (#1146)

• Briefcase will detect if you attempt to launch an Android app on a device whose OS doesn’t meet minimum
version requirements. (#1157)

• macOS apps are now guaranteed to be universal binaries, even when dependencies only provide single-
architecture binary wheels. (#1217)

• The ability to build AppImages in Docker on macOS was restored. (#1352)

• Error reporting has been improved when the target Docker image name is invalid. (#1368)

• Creating Debian packages no longer fails due to a permission error for certain umask values (such as 0077).
(#1369)

• Inside of Docker containers, the Briefcase data directory is now mounted at /briefcase instead of /home/
brutus/.cache/briefcase. (#1374)

• The console output from invoking Python via a subprocess call is now properly decoded as UTF-8. (#1407)

• The command line arguments used to configure the Python environment for briefcase dev no longer leak into
the runtime environment on macOS. (#1413)

Backward Incompatible Changes

• AppImage packaging requires a recent release of LinuxDeploy to continue creating AppImages. Run briefcase
upgrade linuxdeploy to install the latest version. (#1361)

• The size of iOS splash images have changed. iOS apps should now provide 800px, 1600px and 2400px images
(previously, this as 1024px, 2048px and 3072px). This is because iOS 14 added a hard limit on the size of image
resources. (#1371)

• Support for AppImage has been reduced to “best effort”. We will maintain unit test coverage for the AppImage
backend, but we no longer build AppImages as part of our release process. We will accept bug reports related to
AppImage support, and we will merge PRs that address AppImage support, but the core team no longer considers
addressing AppImage bugs a priority, and discourages the use of AppImage for new projects. (#1449)

Documentation

• Documentation on the process of retrieving certificate identities on macOS and Windows was improved. (#1473)

Misc

• #1136, #1290, #1363, #1364, #1365, #1372, #1375, #1376, #1379, #1388, #1394, #1395, #1396, #1398, #1400,
#1401, #1402, #1403, #1408, #1409, #1410, #1411, #1412, #1418, #1419, #1420, #1421, #1427, #1429, #1431,
#1433, #1435, #1436, #1437, #1438, #1442, #1443, #1444, #1445, #1446, #1447, #1448, #1454, #1455, #1456,
#1457, #1464, #1465, #1466, #1470, #1474, #1476, #1477, #1478, #1481, #1485, #1486, #1487, #1488, #1489,
#1490, #1492, #1494

46 Chapter 2. Community

https://github.com/beeware/briefcase/issues/377
https://github.com/beeware/briefcase/issues/1146
https://github.com/beeware/briefcase/issues/1157
https://github.com/beeware/briefcase/issues/1217
https://github.com/beeware/briefcase/issues/1352
https://github.com/beeware/briefcase/issues/1368
https://github.com/beeware/briefcase/issues/1369
https://github.com/beeware/briefcase/issues/1374
https://github.com/beeware/briefcase/issues/1407
https://github.com/beeware/briefcase/pull/1413
https://github.com/beeware/briefcase/issues/1361
https://github.com/beeware/briefcase/pull/1371
https://github.com/beeware/briefcase/pull/1449
https://github.com/beeware/briefcase/pull/1473
https://github.com/beeware/briefcase/issues/1136
https://github.com/beeware/briefcase/pull/1290
https://github.com/beeware/briefcase/pull/1363
https://github.com/beeware/briefcase/pull/1364
https://github.com/beeware/briefcase/pull/1365
https://github.com/beeware/briefcase/pull/1372
https://github.com/beeware/briefcase/pull/1375
https://github.com/beeware/briefcase/pull/1376
https://github.com/beeware/briefcase/issues/1379
https://github.com/beeware/briefcase/pull/1388
https://github.com/beeware/briefcase/pull/1394
https://github.com/beeware/briefcase/pull/1395
https://github.com/beeware/briefcase/pull/1396
https://github.com/beeware/briefcase/pull/1398
https://github.com/beeware/briefcase/pull/1400
https://github.com/beeware/briefcase/pull/1401
https://github.com/beeware/briefcase/pull/1402
https://github.com/beeware/briefcase/pull/1403
https://github.com/beeware/briefcase/pull/1408
https://github.com/beeware/briefcase/pull/1409
https://github.com/beeware/briefcase/pull/1410
https://github.com/beeware/briefcase/issues/1411
https://github.com/beeware/briefcase/pull/1412
https://github.com/beeware/briefcase/pull/1418
https://github.com/beeware/briefcase/pull/1419
https://github.com/beeware/briefcase/pull/1420
https://github.com/beeware/briefcase/pull/1421
https://github.com/beeware/briefcase/pull/1427
https://github.com/beeware/briefcase/issues/1429
https://github.com/beeware/briefcase/issues/1431
https://github.com/beeware/briefcase/pull/1433
https://github.com/beeware/briefcase/pull/1435
https://github.com/beeware/briefcase/pull/1436
https://github.com/beeware/briefcase/pull/1437
https://github.com/beeware/briefcase/pull/1438
https://github.com/beeware/briefcase/pull/1442
https://github.com/beeware/briefcase/pull/1443
https://github.com/beeware/briefcase/pull/1444
https://github.com/beeware/briefcase/pull/1445
https://github.com/beeware/briefcase/pull/1446
https://github.com/beeware/briefcase/pull/1447
https://github.com/beeware/briefcase/pull/1448
https://github.com/beeware/briefcase/pull/1454
https://github.com/beeware/briefcase/pull/1455
https://github.com/beeware/briefcase/pull/1456
https://github.com/beeware/briefcase/pull/1457
https://github.com/beeware/briefcase/pull/1464
https://github.com/beeware/briefcase/pull/1465
https://github.com/beeware/briefcase/pull/1466
https://github.com/beeware/briefcase/pull/1470
https://github.com/beeware/briefcase/pull/1474
https://github.com/beeware/briefcase/pull/1476
https://github.com/beeware/briefcase/pull/1477
https://github.com/beeware/briefcase/pull/1478
https://github.com/beeware/briefcase/issues/1481
https://github.com/beeware/briefcase/pull/1485
https://github.com/beeware/briefcase/pull/1486
https://github.com/beeware/briefcase/pull/1487
https://github.com/beeware/briefcase/pull/1488
https://github.com/beeware/briefcase/pull/1489
https://github.com/beeware/briefcase/pull/1490
https://github.com/beeware/briefcase/pull/1492
https://github.com/beeware/briefcase/pull/1494

Briefcase Documentation, Release 0.3.18

0.3.15 (2023-07-10)

Features

• Windows apps can now be packaged as simple ZIP files. (#457)

• An Android SDK specified in ANDROID_HOME is respected now and will take precedence over the setting of
ANDROID_SDK_ROOT. (#463)

• Android support was upgraded to use Java 17 for builds. (#1065)

• On Linux, Docker Desktop and rootless Docker are now supported. (#1083)

• The company/author name in the installation path for Windows MSI installers is now optional. (#1199)

• macOS code signing is now multi-threaded (and therefore much faster!) (#1201)

• Briefcase will now honor PEP-621 project fields where they map to Briefcase configuration items. (#1203)

Bugfixes

• XML compatibility warnings generated by the Android build have been cleaned up. (#827)

• Non ASCII characters provided in the briefcase new wizard are quoted before being put into pyproject.
toml. (#1011)

• Requests to the web server are now recorded in the log file. (#1090)

• An “Invalid Keystore format” error is no longer raised when signing an app if the local Android keystore was
generated with a recent version of Java. (#1112)

• Content before a closing square bracket (]) or .so) is no longer stripped by the macOS and iOS log filter. (#1179)

• The option to run Linux system packages through Docker was removed. (#1207)

• Error handling for incomplete or corrupted Github clones of templates has been improved. (#1210)

• Application/Bundle IDs are normalized to replace underscores with dashes when possible (#1234)

• Filenames and directories in RPM package definitions are quoted in order to include filenames that include white
space. (#1236)

• Briefcase will no longer display progress bars if the FORCE_COLOR environment variable is set. (#1267)

• When creating a new Briefcase project, the header line in pyproject.toml now contains the version of Brief-
case instead of “Unknown”. (#1276)

• Android logs no longer include timestamp and PID, making them easier to read on narrow screens. (#1286)

• An warning is no longer logged if the Java identified by macOS is not usable by Briefcase. (#1305)

• Incompatibilities with Cookiecutter 2.2.0 have been resolved. (#1347)

2.3. About Briefcase 47

https://github.com/beeware/briefcase/issues/457
https://github.com/beeware/briefcase/issues/463
https://github.com/beeware/briefcase/issues/1065
https://github.com/beeware/briefcase/issues/1083
https://github.com/beeware/briefcase/issues/1199
https://github.com/beeware/briefcase/issues/1201
https://github.com/beeware/briefcase/issues/1203
https://github.com/beeware/briefcase/issues/827
https://github.com/beeware/briefcase/issues/1011
https://github.com/beeware/briefcase/issues/1090
https://github.com/beeware/briefcase/issues/1112
https://github.com/beeware/briefcase/issues/1179
https://github.com/beeware/briefcase/issues/1207
https://github.com/beeware/briefcase/pull/1210
https://github.com/beeware/briefcase/pull/1234
https://github.com/beeware/briefcase/issues/1236
https://github.com/beeware/briefcase/pull/1267
https://github.com/beeware/briefcase/pull/1276
https://github.com/beeware/briefcase/pull/1286
https://github.com/beeware/briefcase/issues/1305
https://github.com/beeware/briefcase/issues/1347

Briefcase Documentation, Release 0.3.18

Backward Incompatible Changes

• Names matching modules in the Python standard library, and main, can no longer be used as an application
name. (#853)

• The --no-sign option for packaging was removed. Briefcase will now prompt for a signing identity during
packaging, falling back to adhoc/no signing as a default where possible. (#865)

• The version of OpenJDK for Java was updated from 8 to 17. Any Android apps generated on previous versions
of Briefcase must be re-generated by running briefcase create android gradle. If customizations were
made to files within the generated app, they will need to be manually re-applied after re-running the create
command. (#1065)

• Flatpak apps no longer default to using the Freedesktop runtime and SDK version 21.08 when a runtime is not
specified. Instead, the runtime now must be explicitly defined in the application configuration. (#1272)

Documentation

• All code blocks were updated to add a button to copy the relevant contents on to the user’s clipboard. (#1213)

• The limitations of using WebKit2 in AppImage were documented. (#1322)

Misc

• #856, #1093, #1178, #1181, #1186, #1187, #1191, #1192, #1193, #1195, #1197, #1200, #1204, #1205, #1206,
#1215, #1226, #1228, #1232, #1233, #1239, #1241, #1242, #1243, #1244, #1246, #1248, #1249, #1253, #1254,
#1255, #1257, #1258, #1262, #1263, #1264, #1265, #1273, #1274, #1279, #1282, #1283, #1284, #1293, #1294,
#1295, #1299, #1300, #1301, #1310, #1311, #1316, #1317, #1323, #1324, #1333, #1334, #1335, #1336, #1339,
#1341, #1350, #1351

0.3.14 (2023-04-12)

Features

• Added support for code signing Windows apps. (#366)

• The base image used to build AppImages is now user-configurable. (#947)

• Support for Arch .pkg.tar.zst packaging was added to the Linux system backend. (#1064)

• Pygame was added as an explicit option for a GUI toolkit. (#1125)

• AppImage and Flatpak builds now use indygreg’s Python Standalone Builds to provide Python support. (#1132)

• BeeWare now has a presence on Mastodon. (#1142)

48 Chapter 2. Community

https://github.com/beeware/briefcase/issues/853
https://github.com/beeware/briefcase/issues/865
https://github.com/beeware/briefcase/issues/1065
https://briefcase.readthedocs.io/en/latest/reference/platforms/linux/flatpak.html#application-configuration
https://github.com/beeware/briefcase/pull/1272
https://github.com/beeware/briefcase/pull/1213
https://github.com/beeware/briefcase/issues/1322
https://github.com/beeware/briefcase/issues/856
https://github.com/beeware/briefcase/pull/1093
https://github.com/beeware/briefcase/pull/1178
https://github.com/beeware/briefcase/pull/1181
https://github.com/beeware/briefcase/pull/1186
https://github.com/beeware/briefcase/issues/1187
https://github.com/beeware/briefcase/pull/1191
https://github.com/beeware/briefcase/pull/1192
https://github.com/beeware/briefcase/pull/1193
https://github.com/beeware/briefcase/issues/1195
https://github.com/beeware/briefcase/pull/1197
https://github.com/beeware/briefcase/pull/1200
https://github.com/beeware/briefcase/pull/1204
https://github.com/beeware/briefcase/pull/1205
https://github.com/beeware/briefcase/pull/1206
https://github.com/beeware/briefcase/pull/1215
https://github.com/beeware/briefcase/pull/1226
https://github.com/beeware/briefcase/pull/1228
https://github.com/beeware/briefcase/pull/1232
https://github.com/beeware/briefcase/pull/1233
https://github.com/beeware/briefcase/pull/1239
https://github.com/beeware/briefcase/pull/1241
https://github.com/beeware/briefcase/pull/1242
https://github.com/beeware/briefcase/pull/1243
https://github.com/beeware/briefcase/pull/1244
https://github.com/beeware/briefcase/pull/1246
https://github.com/beeware/briefcase/pull/1248
https://github.com/beeware/briefcase/issues/1249
https://github.com/beeware/briefcase/pull/1253
https://github.com/beeware/briefcase/pull/1254
https://github.com/beeware/briefcase/pull/1255
https://github.com/beeware/briefcase/pull/1257
https://github.com/beeware/briefcase/pull/1258
https://github.com/beeware/briefcase/pull/1262
https://github.com/beeware/briefcase/pull/1263
https://github.com/beeware/briefcase/pull/1264
https://github.com/beeware/briefcase/pull/1265
https://github.com/beeware/briefcase/pull/1273
https://github.com/beeware/briefcase/pull/1274
https://github.com/beeware/briefcase/pull/1279
https://github.com/beeware/briefcase/pull/1282
https://github.com/beeware/briefcase/pull/1283
https://github.com/beeware/briefcase/pull/1284
https://github.com/beeware/briefcase/pull/1293
https://github.com/beeware/briefcase/pull/1294
https://github.com/beeware/briefcase/pull/1295
https://github.com/beeware/briefcase/pull/1299
https://github.com/beeware/briefcase/pull/1300
https://github.com/beeware/briefcase/pull/1301
https://github.com/beeware/briefcase/pull/1310
https://github.com/beeware/briefcase/pull/1311
https://github.com/beeware/briefcase/pull/1316
https://github.com/beeware/briefcase/pull/1317
https://github.com/beeware/briefcase/pull/1323
https://github.com/beeware/briefcase/pull/1324
https://github.com/beeware/briefcase/pull/1333
https://github.com/beeware/briefcase/pull/1334
https://github.com/beeware/briefcase/pull/1335
https://github.com/beeware/briefcase/pull/1336
https://github.com/beeware/briefcase/issues/1339
https://github.com/beeware/briefcase/pull/1341
https://github.com/beeware/briefcase/pull/1350
https://github.com/beeware/briefcase/pull/1351
https://github.com/beeware/briefcase/issues/366
https://github.com/beeware/briefcase/issues/947
https://github.com/beeware/briefcase/issues/1064
https://github.com/beeware/briefcase/pull/1125
https://github.com/indygreg/python-build-standalone
https://github.com/beeware/briefcase/pull/1132
https://github.com/beeware/briefcase/pull/1142

Briefcase Documentation, Release 0.3.18

Bugfixes

• When commands produce output that cannot be decoded to Unicode, Briefcase now writes the bytes as hex
instead of truncating output or canceling the command altogether. (#1141)

• When JAVA_HOME contains a path to a file instead of a directory, Briefcase will now warn the user and install an
isolated copy of Java instead of logging a NotADirectoryError. (#1144)

• If the Docker buildx plugin is not installed, users are now directed by Briefcase to install it instead of Docker
failing to build the image. (#1153)

Misc

• #1133, #1138, #1139, #1140, #1147, #1148, #1149, #1150, #1151, #1156, #1162, #1163, #1168, #1169, #1170,
#1171, #1172, #1173, #1177

0.3.13 (2023-03-10)

Features

• Distribution artefacts are now generated into a single dist folder. (#424)

• When installing application sources and dependencies, any __pycache__ folders are now automatically re-
moved. (#986)

• A Linux System backend was added, supporting .deb as a packaging format. (#1062)

• Support for .rpm packaging was added to the Linux system backend. (#1063)

• Support for passthrough arguments was added to the dev and run commands. (#1077)

• Users can now define custom content to include in their pyscript.toml configuration file for web deployments.
(#1089)

• The new command now allows for specifying a custom template branch, as well as a custom template. (#1101)

Bugfixes

• Spaces are no longer used in the paths for generated app templates. (#804)

• The stub executable used by Windows now clears the threading mode before starting the Python app. This caused
problems with displaying dialogs in Qt apps. (#930)

• Briefcase now prevents running commands targeting Windows platforms when not on Windows. (#1010)

• The command to store notarization credentials no longer causes Briefcase to hang. (#1100)

• macOS developer tool installation prompts have been improved. (#1122)

2.3. About Briefcase 49

https://github.com/beeware/briefcase/issues/1141
https://github.com/beeware/briefcase/pull/1144
https://github.com/beeware/briefcase/pull/1153
https://github.com/beeware/briefcase/pull/1133
https://github.com/beeware/briefcase/pull/1138
https://github.com/beeware/briefcase/pull/1139
https://github.com/beeware/briefcase/pull/1140
https://github.com/beeware/briefcase/pull/1147
https://github.com/beeware/briefcase/pull/1148
https://github.com/beeware/briefcase/pull/1149
https://github.com/beeware/briefcase/pull/1150
https://github.com/beeware/briefcase/pull/1151
https://github.com/beeware/briefcase/pull/1156
https://github.com/beeware/briefcase/pull/1162
https://github.com/beeware/briefcase/pull/1163
https://github.com/beeware/briefcase/pull/1168
https://github.com/beeware/briefcase/pull/1169
https://github.com/beeware/briefcase/pull/1170
https://github.com/beeware/briefcase/pull/1171
https://github.com/beeware/briefcase/pull/1172
https://github.com/beeware/briefcase/pull/1173
https://github.com/beeware/briefcase/pull/1177
https://github.com/beeware/briefcase/issues/424
https://github.com/beeware/briefcase/issues/986
https://github.com/beeware/briefcase/issues/1062
https://github.com/beeware/briefcase/issues/1063
https://github.com/beeware/briefcase/issues/1077
https://github.com/beeware/briefcase/issues/1089
https://github.com/beeware/briefcase/pull/1101
https://github.com/beeware/briefcase/issues/804
https://github.com/beeware/briefcase/issues/930
https://github.com/beeware/briefcase/issues/1010
https://github.com/beeware/briefcase/pull/1100
https://github.com/beeware/briefcase/pull/1122

Briefcase Documentation, Release 0.3.18

Misc

• #1070, #1074, #1075, #1076, #1080, #1084, #1085, #1086, #1087, #1094, #1096, #1097, #1098, #1103, #1109,
#1110, #1111, #1119, #1120, #1130

0.3.12 (2023-01-30)

Features

• Briefcase is more resilient to file download failures by discarding partially downloaded files. (#753)

• All warnings from the App and its dependencies are now shown when running briefcase dev by invoking
Python in development mode. (#806)

• The Dockerfile used to build AppImages can now include user-provided container setup instructions. (#886)

• It is no longer necessary to specify a device when building an iOS project. (#953)

• Briefcase apps can now provide a test suite. briefcase run and briefcase dev both provide a --test
option to start the test suite. (#962)

• Initial support for Python 3.12 was added. (#965)

• Frameworks contained added to a macOS app bundle are now automatically code signed. (#971)

• The build.gradle file used to build Android apps can now include arbitrary additional settings. (#973)

• The run and build commands now have full control over the update of app requirements resources. (#983)

• Resources that require variants will now use the variant name as part of the filename by default. (#989)

• briefcase open linux appimage now starts a shell session in the Docker context, rather than opening the
project folder. (#991)

• Web project configuration has been updated to reflect recent changes to PyScript. (#1004)

Bugfixes

• Console output of Windows apps is now captured in the Briefcase log. (#787)

• Android emulators configured with _no_skin will no longer generate a warning. (#882)

• Briefcase now exits normally when CTRL-C is sent while tailing logs for the App when using briefcase run.
(#904)

• Backslashes and double quotes are now safe to be used for formal name and description (#905)

• The console output for Windows batch scripts in now captured in the Briefcase log. (#917)

• When using the Windows Store version of Python, Briefcase now ensures the cache directory is created in
%LOCALAPPDATA% instead of the sandboxed location enforced for Windows Store apps. (#922)

• An Android application that successfully starts, but fails quickly, no longer stalls the launch process. (#936)

• The required Visual Studio Code components are now included in verification errors for Visual Studio Apps.
(#939)

• It is now possible to specify app configurations for macOS Xcode and Windows VisualStudio projects. Previ-
ously, these sections of configuration files would be ignored due to a case discrepancy. (#952)

• Development mode now starts apps in PEP540 UTF-8 mode, for consistency with the stub apps. (#985)

50 Chapter 2. Community

https://github.com/beeware/briefcase/pull/1070
https://github.com/beeware/briefcase/pull/1074
https://github.com/beeware/briefcase/pull/1075
https://github.com/beeware/briefcase/pull/1076
https://github.com/beeware/briefcase/pull/1080
https://github.com/beeware/briefcase/pull/1084
https://github.com/beeware/briefcase/pull/1085
https://github.com/beeware/briefcase/pull/1086
https://github.com/beeware/briefcase/issues/1087
https://github.com/beeware/briefcase/pull/1094
https://github.com/beeware/briefcase/pull/1096
https://github.com/beeware/briefcase/pull/1097
https://github.com/beeware/briefcase/pull/1098
https://github.com/beeware/briefcase/pull/1103
https://github.com/beeware/briefcase/pull/1109
https://github.com/beeware/briefcase/pull/1110
https://github.com/beeware/briefcase/pull/1111
https://github.com/beeware/briefcase/pull/1119
https://github.com/beeware/briefcase/pull/1120
https://github.com/beeware/briefcase/pull/1130
https://github.com/beeware/briefcase/issues/753
https://docs.python.org/3/library/devmode.html
https://github.com/beeware/briefcase/issues/806
https://github.com/beeware/briefcase/issues/886
https://github.com/beeware/briefcase/pull/953
https://github.com/beeware/briefcase/pull/962
https://github.com/beeware/briefcase/pull/965
https://github.com/beeware/briefcase/pull/971
https://github.com/beeware/briefcase/issues/973
https://github.com/beeware/briefcase/pull/983
https://github.com/beeware/briefcase/pull/989
https://github.com/beeware/briefcase/issues/991
https://github.com/beeware/briefcase/issues/1004
https://github.com/beeware/briefcase/issues/787
https://github.com/beeware/briefcase/issues/882
https://github.com/beeware/briefcase/issues/904
https://github.com/beeware/briefcase/issues/905
https://github.com/beeware/briefcase/issues/917
https://github.com/beeware/briefcase/issues/922
https://github.com/beeware/briefcase/issues/936
https://github.com/beeware/briefcase/issues/939
https://github.com/beeware/briefcase/pull/952
https://github.com/beeware/briefcase/pull/985

Briefcase Documentation, Release 0.3.18

• Local file references in requirements no longer break AppImage builds. (#992)

• On macOS, Rosetta is now installed automatically if needed. (#1000)

• The way dependency versions are specified has been modified to make Briefcase as accommodating as possible
with end-user environments, but as stable as possible for development environments. (#1041)

• To prevent console corruption, dynamic console elements (such as the Wait Bar) are temporarily removed when
output streaming is disabled for a command. (#1055)

Improved Documentation

• Release history now contains links to GitHub issues. (#1022)

Misc

• #906, #907, #918, #923, #924, #925, #926, #929, #931, #951, #959, #960, #964, #967, #969, #972, #981, #984,
#987, #994, #995, #996, #997, #1001, #1002, #1003, #1012, #1013, #1020, #1021, #1023, #1028, #1038, #1042,
#1043, #1044, #1045, #1046, #1047, #1048, #1049, #1051, #1052, #1057, #1059, #1061, #1068, #1069, #1071

0.3.11 (2022-10-14)

Features

• Added support for deploying an app as a static web page using PyScript. (#3)

• Briefcase log files are now stored in the logs subdirectory and only when the current directory is a Briefcase
project. (#883)

Bugfixes

• Output from spawned Python processes, such as when running briefcase dev, is no longer buffered and dis-
plays in the console immediately. (#891)

Misc

• #848, #885, #887, #888, #889, #893, #894, #895, #896, #897, #899, #900, #908, #909, #910, #915

0.3.10 (2022-09-28)

Features

• iOS and Android now supports the installation of binary packages. (#471)

• Apps can now selectively remove files from the final app bundle using the cleanup_paths attribute. (#550)

• The Docker image for AppImage builds is created or updated for all commands instead of just create. (#796)

• The performance of Briefcase’s tool verification process has been improved. (#801)

• Briefcase templates are now versioned by the Briefcase version, rather than the Python version. (#824)

2.3. About Briefcase 51

https://github.com/beeware/briefcase/issues/992
https://github.com/beeware/briefcase/issues/1000
https://github.com/beeware/briefcase/pull/1041
https://github.com/beeware/briefcase/issues/1055
https://github.com/beeware/briefcase/pull/1022

Briefcase Documentation, Release 0.3.18

• Android commands now start faster, as they only gather a list of SDK packages when needed to write a log file.
(#832)

• Log messages can be captured on iOS if they originate from a dynamically loaded module. (#842)

• Added an “open” command that can be used to open projects in IDEs. (#846)

Bugfixes

• The Wait Bar is disabled for batch scripts on Windows to prevent hiding user prompts when CTRL+C is pressed.
(#811)

• Android emulators that don’t provide a model identifier can now be used to launch apps. (#820)

• All linuxdeploy plugins are made executable and ELF headers for AppImage plugins are patched for use in
Docker. (#829)

• The RCEdit plugin can now be upgraded. (#837)

• When verifying the existence of the Android emulator, Briefcase now looks for the actual binary, not the folder
that contains the binary. This was causing false positives on some Android SDK setups. (#841)

• When CTRL+C is entered while an external program is running, briefcasewill properly abort and exit. (#851)

• An issue with running briefcase dev on projects that put their application module in the project root has been
resolved. (#863)

Improved Documentation

• Added FAQ entries on the state of binary package support on mobile. (#471)

Misc

• #831, #834, #840, #844, #857, #859, #867, #868, #874, #878, #879

0.3.9 (2022-08-17)

Features

• Linux apps can now be packaged in Flatpak format. (#359)

• SDKs, tools, and other downloads needed to support app builds are now stored in an OS-native user cache
directory instead of ~/.briefcase. (#374)

• Windows MSI installers can now be configured to ask the user whether they want a per-user or per-machine
install. (#382)

• The console output of Windows apps is now captured and displayed during briefcase run. (#620)

• Windows apps are now packaged with a stub application. This ensures that Windows apps present with the name
and icon of the app, rather than the pythonw.exe name and icon. It also allows for improvements in logging
and error handling. (#629)

• Temporary docker containers are now cleaned up after use. The wording of Docker progress messages has also
been improved. (#774)

52 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

• Users can now define a BRIEFCASE_HOME environment variable. This allows you to specify the location of the
Briefcase tool cache, allowing the user to avoid issues with spaces in paths or disk space limitations. (#789)

• Android emulator output is now printed to the console if it fails to start properly. (#799)

• briefcase android run now shows logs from only the current process, and includes all log tags except some
particularly noisy and useless ones. It also no longer clears the logcat buffer. (#814)

Bugfixes

• Apps now have better isolation against the current working directory. This ensures that code in the current
working directory isn’t inadvertently included when an app runs. (#662)

• Windows MSI installers now install in Program Files, rather than Program Files (x86). (#688)

• Linuxdeploy plugins can now be used when building Linux AppImages; this resolves many issues with GTK app
deployment. (#756)

• Collision protection has been added to custom support packages that have the same name, but are served by
different URLs. (#797)

• Python 3.7 and 3.8 on Windows will no longer deadlock when CTRL+C is sent during a subprocess command.
(#809)

Misc

• #778, #783, #784, #785, #786, #787, #794, #800, #805, #810, #813, #815

0.3.8 (2022-06-27)

Features

• macOS apps are now notarized as part of the packaging process. (#365)

• Console output now uses Rich to provide visual highlights and progress bars. (#740)

• The macOS log streamer now automatically exits using the run command when the app exits. (#742)

• A verbose log is written to file when a critical error occurs or –log is specified. (#760)

Bugfixes

• Updating an Android app now forces a re-install of the app. This corrects a problem (usually seen on physical
devices) where app updates wouldn’t be deployed if the app was already on the device. (#395)

• The iOS simulator is now able to correctly detect the iOS version when only a device name is provided. (#528)

• Windows MSI projects are now able to support files with non-ASCII filenames. (#749)

• The existence of an appropriate Android system image is now verified independently to the existence of the
emulator. (#762)

• The error message presented when the Xcode Command Line Tools are installed, but Xcode is not, has been
clarified. (#763)

• The METADATA file generated by Briefcase is now UTF-8 encoded, so it can handle non-Latin-1 characters.
(#767)

2.3. About Briefcase 53

Briefcase Documentation, Release 0.3.18

• Output from subprocesses is correctly encoded, avoiding errors (especially on Windows) when tool output in-
cludes non-ASCII content. (#770)

Improved Documentation

• Documented a workaround for ELF load command address/offset errors seen when using manylinux wheels.
(#718)

Misc

• #743, #744, #755

0.3.7 (2022-05-17)

Features

• Apps can be updated as part of a call to package. (#473)

• The Android emulator can now be used on Apple M1 hardware. (#616)

• Names that are reserved words in Python (or other common programming languages) are now prevented when
creating apps. (#617)

• Names that are invalid on Windows as filenames (such as CON and LPT0) are now invalid as app names. (#685)

• Verbose logging via -v and -vv now includes the return code, output, and environment variables for shell com-
mands (#704)

• When the output of a wrapped command cannot be parsed, full command output, and failure reason is now
logged. (#728)

• The iOS emulator will now run apps natively on M1 hardware, rather than through Rosetta emulation. (#739)

Bugfixes

• Bundle identifiers are now validated to ensure they don’t contain reserved words. (#460)

• The error reporting when the user is on an unsupported platform or Python version has been improved. (#541)

• When the formal name uses non-Latin characters, the suggested Class and App names are now valid. (#612)

• The code signing process for macOS apps has been made more robust. (#652)

• macOS app binaries are now adhoc signed by default, ensuring they can run on M1 hardware. (#664)

• Xcode version checks are now more robust. (#668)

• Android projects that have punctuation in their formal names can now build without error. (#696)

• Bundle name validation no longer excludes valid country identifiers (like in.example). (#709)

• Application code and dist-info is now fully replaced during an update. (#720)

• Errors related to Java JDK detection now properly contain the value of JAVA_HOME instead of the word None
(#727)

• All log entries will now be displayed for the run command on iOS and macOS; previously, initial log entries may
have been omitted. (#731)

54 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

• Using CTRL+C to stop showing Android emulator logs while running the app will no longer cause the emulator
to shutdown. (#733)

Misc

• #680, #681, #699, #726, #734

0.3.6 (2022-02-28)

Features

• On macOS, iOS, and Android, briefcase run now displays the application logs once the application has
started. (#591)

• Xcode detection code now allows for Xcode to be installed in locations other than /Applications/Xcode.app.
(#622)

• Deprecated support for Python 3.6. (#653)

Bugfixes

• Existing app packages are now cleared before reinstalling dependencies. (#644)

• Added binary patch tool for AppImages to increase compatibility. (#667)

Improved Documentation

• Documentation on creating macOS/iOS code signing identities has been added (#641)

Misc

• #587, #588, #592, #598, #621, #643, #654, #670

0.3.5 (2021-03-06)

Features

• macOS projects can now be generated as an Xcode project. (#523)

Bugfixes

• macOS apps are now built as an embedded native binary, rather than a shell script invoking a Python script. This
was necessary to provide better support for macOS app notarization and sandboxing. (#523)

• Fixed the registration of setuptools entry points caused by a change in case sensitivity handling in Setuptools
53.1.0. (#574)

2.3. About Briefcase 55

Briefcase Documentation, Release 0.3.18

Misc

• #562

0.3.4 (2021-01-03)

Features

• Added signing options for all platforms. App signing is only implemented on macOS, but --no-sign can now
be used regardless of your target platform. (#486)

• Windows MSI installers can be configured to be per-machine, system-wide installers. (#498)

• Projects can specify a custom branch for the template used to generate the app. (#519)

• Added the –no-run flag to the dev command. This allows developers to install app dependencies without running
the app. (#522)

• The new project wizard will now warn users when they select a platform that doesn’t support mobile deployment.
(#539)

Bugfixes

• Modified the volume mounting process to allow for SELinux. (#500)

• Fixed missing signature for Python executable in macOS app bundle. This enables the packaged dmg to be
notarized by Apple. (#514)

• Modified the Windows tests to allow them to pass on 32-bit machines. (#521)

• Fixed a crash when running with verbose output. (#532)

Improved Documentation

• Clarified documentation around system_requires dependencies on Linux. (#459)

Misc

• #465, #475, #496, #512, #518

0.3.3 (2020-07-18)

Features

• WiX is now auto-downloaded when the MSI backend is used. (#389)

• The upgrade command now provides a way to upgrade tools that Briefcase has downloaded, including WiX,
Java, Linuxdeploy, and the Android SDK. (#450)

56 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

Bugfixes

• Binary modules in Linux AppImages are now processed correctly, ensuring that no references to system libraries
are retained in the AppImage. (#420)

• If pip is configured to use a per-user site_packages, this no longer clashes with the installation of application
packages. (#441)

• Docker-using commands now check whether the Docker daemon is running and if the user has permission to
access it. (#442)

0.3.2 (2020-07-04)

Features

• Added pytest coverage to CI/CD process. (#417)

• Application metadata now contains a Briefcase-Version indicator. (#425)

• The device list returned by briefcase run android now uses the Android device model name and unique ID
e.g. a Pixel 3a shows up as Pixel 3a (adbDeviceId). (#433)

• Android apps are now packaged in Android App Bundle format. This allows the Play Store to dynamically build
the smallest APK appropriate to a device installing an app. (#438)

• PursuedPyBear is now included in the new project wizard. (#440)

Bugfixes

• iOS builds will now warn if the Xcode command line tools are the active. (#397)

• Linux Docker builds no longer use interactive mode, allowing builds to run on CI (or other TTY-less devices).
(#439)

Improved Documentation

• Documented the process of signing Android apps & publishing them to the Google Play store. (#342)

Misc

• #428

0.3.1 (2020-06-13)

Features

• The Linux AppImage backend has been modified to use Docker. This ensures that the AppImage is always built
in an environment that is compatible with the support package. It also enables Linux AppImages to be built on
macOS and Windows. “Native” builds (i.e., builds that don’t use Docker) can be invoked using the --no-docker
argument. (#344)

• A PYTHONPATH property has been added to AppConfig that describes the sys.path changes needed to run the
app. (#401)

2.3. About Briefcase 57

Briefcase Documentation, Release 0.3.18

• Ad-hoc code signing is now possible on macOS with briefcase package --adhoc-sign. (#409)

• Android apps can now use use - in their bundle name; we now convert - to _ in the resulting Android package
identifier and Java package name. (#415)

• Mobile applications now support setting the background color of the splash screen, and setting a build identifier.
(#422)

• Android now has a package command that produces the release APK. After manually signing this APK, it can
be published to the Google Play Store. (#423)

Bugfixes

• Some stray punctuation in the Android device helper output has been removed. (#396)

• An explicit version check for Docker is now performed. (#402)

• The Linux build process ensures the Docker user matches the UID/GID of the host user. (#403)

• Briefcase now ensures that the Python installation ecosystem tools (pip, setuptools, and wheel), are all
present and up to date. (#421)

Improved Documentation

• Documented that Windows MSI builds produce per-user installable MSI installers, while still supporting per-
machine installs via the CLI. (#382)

• CONTRIBUTING.md has been updated to link to Briefcase-specific documentation. (#404)

• Removed references to the build-system table in pyproject.toml. (#410)

Misc

• #380, #384

0.3.0 (2020-04-18)

Features

• Converted Briefcase to be a PEP518 tool, rather than a setuptools extension. (#266)

0.2.10

• Improved pre-detection of Xcode and related tools

• Improved error handling when starting external tools

• Fixed iOS simulator integration

58 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

0.2.9

• Updated mechanism for starting the iOS simulator

• Added support for environment markers in install_requires

• Improved error handling when WiX isn’t found

0.2.8

• Corrects packaging problem with urllib3, caused by inconsistency between requests and boto3.

• Corrected problems with Start menu targets being created on Windows.

0.2.7

• Added support for launch images for iPhone X, Xs, Xr, Xs Max and Xr Max

• Completed removal of internal pip API dependencies.

0.2.6

• Added support for registering OS-level document type handlers.

• Removed dependency on an internal pip API.

• Corrected invocation of gradlew on Windows

• Addressed support for support builds greater than b9.

0.2.5

• Restored download progress bars when downloading support packages.

0.2.4

• Corrected a bug in the iOS backend that prevented iOS builds.

0.2.3

• Bugfix release, correcting the fix for pip 10 support.

0.2.2

• Added compatibility with pip 10.

• Improved Windows packaging to allow for multiple executables

• Added a --clean command line option to force a refresh of generated code.

• Improved error handling for bad builds

2.3. About Briefcase 59

Briefcase Documentation, Release 0.3.18

0.2.1

• Improved error reporting when a support package isn’t available.

0.2.0

• Added -s option to launch projects

• Switch to using AWS S3 resources rather than GitHub Files.

0.1.9

• Added a full Windows installer backend

0.1.8

• Modified template roll out process to avoid API limits on GitHub.

0.1.7

• Added check for existing directories, with the option to replace existing content.

• Added a Linux backend.

• Added a Windows backend.

• Added a splash screen for Android

0.1.6

• Added a Django backend (@glasnt)

0.1.5

• Added initial Android template

• Force versions of pip (>= 8.1) and setuptools (>=27.0)

• Drop support for Python 2

0.1.4

• Added support for tvOS projects

• Moved to using branches in the project template repositories.

60 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

0.1.3

• Added support for Android projects using VOC.

0.1.2

• Added support for having multi-target support projects. This clears the way for Briefcase to be used for watchOS
and tvOS projects, and potentially for Python-OSX-support and Python-iOS-support to be merged into a single
Python-Apple-support.

0.1.1

• Added support for app icons and splash screens.

0.1.0

• Initial public release.

2.4 Reference

This is the technical reference for public APIs provided by Briefcase.

2.4.1 Briefcase configuration options

Environment variables

BRIEFCASE_HOME

When briefcase runs, it will download the support files, tools, and SDKs necessary to support building and packaging
apps. By default, it will store the files in a platform-native cache folder:

• macOS: ~/Library/Caches/org.beeware.briefcase

• Windows: %LOCALAPPDATA%\BeeWare\briefcase\Cache

• Linux: ~/.cache/briefcase

If you want to use a different folder to store the Briefcase resources, you can define a BRIEFCASE_HOME environment
variable.

There are three restrictions on this path specification:

1. The path must already exist. If it doesn’t exist, you should create it manually.

2. It must not contain any spaces.

3. It must not be on a network drive.

The second two restrictions both exist because some of the tools that Briefcase uses (in particular, the Android SDK)
do not work in these locations.

2.4. Reference 61

Briefcase Documentation, Release 0.3.18

2.4.2 Project configuration options

Briefcase is a PEP518-compliant build tool. It uses a pyproject.toml file, in the root directory of your project, to
provide build instructions for the packaged file.

If you have an application called “My App”, with source code in the src/myapp directory, the simplest possible
pyproject.toml Briefcase configuration file would be:

[tool.briefcase]
project_name = "My Project"
bundle = "com.example"
version = "0.1"

[tool.briefcase.app.myapp]
formal_name = "My App"
description = "My first Briefcase App"
sources = ['src/myapp']

The configuration sections are tool specific, and start with the prefix tool.briefcase.

The location of the pyproject.toml file is treated as the root of the project definition. Briefcase should be invoked in
a directory that contains a pyproject.toml file, and all relative file path references contained in the pyproject.toml
file will be interpreted relative to the directory that contains the pyproject.toml file.

Configuration sections

A project that is packaged by Briefcase can declare multiple applications. Each application is a distributable product
of the build process. A simple project will only have a single application. However, a complex project may contain
multiple applications with shared code.

Each setting can be specified:

• At the level of an output format (e.g., settings specific to building macOS DMGs);

• At the level of an platform for an app (e.g., macOS specific settings);

• At the level of an individual app; or

• Globally, for all applications in the project.

When building an application in a particular output format, Briefcase will look for settings in the same order. For
example, if you’re building a macOS DMG for an application called myapp, Briefcase will look for macOS DMG
settings for myapp, then for macOS settings for myapp, then for myapp settings, then for project-level settings.

[tool.briefcase]

The base [tool.briefcase] section declares settings that project specific, or are are common to all applications in
this repository.

62 Chapter 2. Community

https://peps.python.org/pep-0518/

Briefcase Documentation, Release 0.3.18

[tool.briefcase.app.<app name>]

Configuration options for a specific application.

<app name> must adhere to a valid Python distribution name as specified in PEP508. The app name must also not be
a reserved word in Python, Java or JavaScript (i.e., app names like switch or pass would not be valid); and it may not
include any of the filenames prohibited by Windows (i.e., CON, PRN, or LPT1).

[tool.briefcase.app.<app name>.<platform>]

Configuration options for an application that are platform specific. The platform must match a name for a platform
supported by Briefcase (e.g., macOS or windows). A list of the platforms supported by Briefcase can be obtained by
running briefcase -h, and inspecting the help for the platform option

[tool.briefcase.app.<app name>.<platform>.<output format>]

Configuration options that are specific to a particular output format. For example, macOS applications can be generated
in app or dmg format.

This section can contain additional layers. for example, an app targeting the Linux system backend can define a tool.
briefcase.app.<app name>.linux.system.ubuntu.jammy section to provide configurations specific to Ubuntu
22.04 “Jammy” deployments. See the documentation for each backend for more details.

Project configuration

Required values

bundle

A reverse-domain name that can be used to identify resources for the application e.g., com.example. The bundle
identifier will be combined with the app name to produce a unique application identifier - e.g., if the bundle identifier
is com.example and the app name is myapp, the application will be identified as com.example.myapp.

project_name

The project is the collection of all applications that are described by the briefcase configuration. For projects with a
single app, this may be the same as the formal name of the solitary packaged app.

version

A PEP440 compliant version string.

Examples of valid version strings:

• 1.0

• 1.2.3

• 1.2.3.dev4 - A development release

• 1.2.3a5 - An alpha pre-release

2.4. Reference 63

https://peps.python.org/pep-0508/#names
https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file#naming-conventions
https://peps.python.org/pep-0440/

Briefcase Documentation, Release 0.3.18

• 1.2.3b6 - A Beta pre-release

• 1.2.3rc7 - A release candidate

• 1.2.3.post8 - A post-release

Optional values

author

The person or organization responsible for the project.

author_email

The contact email address for the person or organization responsible for the project.

url

A URL where more details about the project can be found.

Application configuration

Required

description

A short, one-line description of the purpose of the application.

sources

A list of paths, relative to the pyproject.toml file, where source code for the application can be found. The contents
of any named files or folders will be copied into the application bundle. Parent directories in any named path will not
be included. For example, if you specify src/myapp as a source, the contents of the myapp folder will be copied into
the application bundle; the src directory will not be reproduced.

Unlike most other keys in a configuration file, sources is a cumulative setting. If an application defines sources at the
global level, application level, and platform level, the final set of sources will be the concatenation of sources from all
levels, starting from least to most specific.

Optional values

accent_color

A hexadecimal RGB color value (e.g., #D81B60) for a subtle secondary color to be used throughout an application
to call attention to key elements. This setting is only used if the platform allows color modification, otherwise it is
ignored.

64 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

author

The person or organization responsible for the application.

author_email

The contact email address for the person or organization responsible for the application.

build

A build identifier. An integer, used in addition to the version specifier, to identify a specific compiled version of an
application.

cleanup_paths

A list of strings describing paths that will be removed from the project after the installation of the support package and
app code. The paths provided will be interpreted relative to the app bundle folder (e.g., the macOS/app/My App folder
in the case of a macOS app).

Paths can be:

• An explicit reference to a single file

• An explicit reference to a single directory

• Any file system glob accepted by pathlib.glob (See the Python documentation for details)

Paths are treated as format strings prior to glob expansion. You can use Python string formatting to include references
to configuration properties of the app (e.g., app.formal_name, app.version, etc).

For example, the following cleanup_paths specification:

cleanup_paths = [
"path/to/unneeded_file.txt",
"path/to/unneeded_directory",
"path/**/*.exe",
"{app.formal_name}/content/extra.doc"

]

on an app with a formal name of “My App” would remove:

1. The file path/to/unneeded_file.txt

2. The directory path/to/unneeded_directory

3. Any .exe file in path or its subdirectories.

4. The file My App/content/extra.doc.

2.4. Reference 65

https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob

Briefcase Documentation, Release 0.3.18

exit_regex

A regular expression that will be executed against the console output generated by an application. If/when the regular
expression find match, the application will be terminated; the line matching the regular expression will not be output to
the console. Used by Briefcase to monitor test suites; however, the filter will also be honored on normal run invocations.

The regular expression should capture a single group named returncode, capturing the integer exit status that should
be reported for the process. The default value for this regular expression is ^>>>>>>>>>> EXIT (?P<returncode>.
*) <<<<<<<<<<$ The regex will be compiled with the re.MULTILINE flag enabled.

formal_name

The application name as it should be displayed to humans. This name may contain capitalization and punctuation. If
it is not specified, the name will be used.

icon

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the icon for the
application. The path should exclude the extension; Briefcase will append a platform appropriate extension when
configuring the application. For example, an icon specification of icon = "resources/icon" will use resources/
icon.icns on macOS, and resources/icon.ico on Windows.

Some platforms require multiple icons, at different sizes; these will be handled by appending the required size to the
provided icon name. For example, iOS requires multiple icon sizes (ranging from 20px to 1024px); Briefcase will look
for resources/icon-20.png, resources/icon-1024.png, and so on. The sizes that are required are determined
by the platform template.

installer_icon

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the icon for the
installer. As with icon, the path should exclude the extension, and a platform-appropriate extension will be appended
when the application is built.

installer_background

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the background for
the installer. The path should exclude the extension, and a platform-appropriate extension will be appended when the
application is built.

long_description

A longer description of the purpose of the application. This description can be multiple paragraphs, if necessary.
The long description must not be a copy of the description, or include the description as the first line of the
long_description.

66 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

primary_color

A hexadecimal RGB color value (e.g., #008577) to use as the primary color for the application. This setting is only
used if the platform allows color modification, otherwise it is ignored.

primary_color_dark

A hexadecimal RGB color value (e.g., #008577) used alongside the primary color. This setting is only used if the
platform allows color modification, otherwise it is ignored.

requires

A list of packages that must be packaged with this application.

Unlike most other keys in a configuration file, requires is a cumulative setting. If an application defines requirements
at the global level, application level, and platform level, the final set of requirements will be the concatenation of
requirements from all levels, starting from least to most specific.

revision

An identifier used to differentiate specific builds of the same version of an app. Defaults to 1 if not provided.

splash_background_color

A hexadecimal RGB color value (e.g., #6495ED) to use as the background color for splash screens.

If the platform output format does not use a splash screen, this setting is ignored.

support_package

A file path or URL pointing at a tarball containing a Python support package. (i.e., a precompiled, embeddable Python
interpreter for the platform)

If this setting is not provided, Briefcase will use the default support package for the platform.

support_revision

The specific revision of a support package that should be used. By default, Briefcase will use the support package revi-
sion nominated by the application template. If you specify a support revision, that will override the revision nominated
by the application template.

If you specify an explicit support package (either as a URL or a file path), this argument is ignored.

2.4. Reference 67

Briefcase Documentation, Release 0.3.18

supported

Indicates that the platform is not supported. For example, if you know that the app cannot be deployed to Android for
some reason, you can explicitly prevent deployment by setting supported=False in the Android section of the app
configuration file.

If supported is set to false, the create command will fail, advising the user of the limitation.

template

A file path or URL pointing at a cookiecutter template for the output format.

If this setting is not provided, Briefcase will use a default template for the output format and Python version.

template_branch

The branch of the project template to use when generating the app. If the template is a local file, this attribute will
be ignored. If not specified, Briefcase will use a branch matching the version of Briefcase that is being used (i.e., if
you’re using Briefcase 0.3.9, Briefcase will use the v0.3.9 template branch when generating the app). If you’re using
a development version of Briefcase, Briefcase will use the main branch of the template.

test_requires

A list of packages that are required for the test suite to run.

Unlike most other keys in a configuration file, test_requires is a cumulative setting. If an application defines require-
ments at the global level, application level, and platform level, the final set of requirements will be the concatenation
of requirements from all levels, starting from least to most specific.

test_sources

A list of paths, relative to the pyproject.toml file, where test code for the application can be found. The contents of
any named files or folders will be copied into the application bundle. Parent directories in any named path will not be
included. For example, if you specify src/myapp as a source, the contents of the myapp folder will be copied into the
application bundle; the src directory will not be reproduced.

As with sources, test_sources is a cumulative setting. If an application defines sources at the global level, applica-
tion level, and platform level, the final set of sources will be the concatenation of test sources from all levels, starting
from least to most specific.

url

A URL where more details about the application can be found.

68 Chapter 2. Community

https://github.com/cookiecutter/cookiecutter

Briefcase Documentation, Release 0.3.18

Permissions

Applications may also need to declare the permissions they require. Permissions are specified as sub-attributes of a
permission property, defined at the level of an project, app, or platform. Permission declarations are cumulative; if
an application defines permissions at the global level, application level, and platform level, the final set of permissions
will be the merged set of all permissions from all levels, starting from least to most specific, with the most specific
taking priority.

Briefcase maintains a set of cross-platform permissions:

• permission.camera - permission to access to the camera to take photos or video.

• permission.microphone - permission to access the microphone.

• permission.coarse_location - permission to determine a rough GPS location.

• permission.fine_location - permission to determine a precise GPS location.

• permission.background_location - permission to track GPS location while in the background.

• permission.photo_library - permission to access to the user’s photo library.

If a cross-platform permission is used, it will be mapped to platform-specific values in whatever files are used to define
permissions on that platform.

Permissions can also be configured by adding platform-specific configuration items. See the documentation for the the
platform backends to see the options that are available.

The value for each permission is a short description of why that permission is required. If the platform requires, the
value may be displayed to the user as part of an authorization dialog. This description should describe why the app
requires the permission, rather than a generic description of the permission being requested.

The use of permissions may also imply other settings in your app. See the individual platform backends for details on
how cross-platform permissions are mapped.

Document types

Applications in a project can register themselves with the operating system as handlers for specific document types
by adding a document_type configuration section for each document type the application can support. This section
follows the format:

[tool.briefcase.app.<app name>.document_type.<extension>]

or, for a platform specific definition:

[tool.briefcase.app.<app name>.<platform>.document_type.<extension>]

where extension is the file extension to register. For example, myapp could register as a handler for PNG image files
by defining the configuration section [tool.briefcase.app.myapp.document_type.png].

The document type declaration requires the following settings:

2.4. Reference 69

Briefcase Documentation, Release 0.3.18

description

A short, one-line description of the document format.

icon

A path, relative to the directory where the pyproject.toml file is located, to an image for an icon to register for use
with documents of this type. The path should exclude the extension; Briefcase will append a platform appropriate
extension when configuring the application. For example, an icon specification of:

icon = "resources/icon"

will use resources/icon.icns on macOS, and resources/icon.ico on Windows.

Some platforms also require different variants (e.g., both square and round icons). These variants can be specified by
qualifying the icon specification:

icon.round = "resource/round-icon"
icon.square = "resource/square-icon"

Some platforms require multiple icons, at different sizes; these will be handled by appending the required size to the
provided icon name. For example, iOS requires multiple icon sizes (ranging from 20px to 1024px); Briefcase will look
for resources/icon-20.png, resources/icon-1024.png, and so on. The sizes that are required are determined
by the platform template.

If a platform requires both different sizes and variants, the variant handling and size handling will be combined.
For example, Android requires round and square icons, in sizes ranging from 48px to 192px; Briefcase will look
for resource/round-icon-42.png, resource/square-icon-42.png, resource/round-icon-192.png, and
so on.

url

A URL for help related to the document format.

PEP621 compatibility

Many of the keys that exist in Briefcase’s configuration have analogous settings in PEP621 project metadata. If your
pyproject.toml defines a [project] section, Briefcase will honor those settings as a top level definition. Any
[tool.briefcase] definitions will override those in the [project] section.

The following PEP621 project metadata keys will be used by Briefcase if they are available:

• version maps to the same key in Briefcase.

• authors The email and name keys of the first value in the authors setting map to author and author_email.

• dependenciesmaps to the Briefcase requires setting. This is a cumulative setting; any packages defined in the
requires setting at the [tool.briefcase] level will be appended to the packages defined with dependencies
at the [project] level.

• description maps to the same key in Briefcase.

• test in an [project.optional-dependencies] section maps to test_requires., As with
dependencies/requires, this is a cumulative setting.

• text in a [project.license] section will be mapped to license.

70 Chapter 2. Community

https://packaging.python.org/en/latest/specifications/pyproject-toml/

Briefcase Documentation, Release 0.3.18

• homepage in a [project.urls] section will be mapped to url.

2.4.3 Command reference

new

Start a new Briefcase project. Runs a wizard to ask questions about your new application, and creates a stub project
using the details provided.

Usage

To start a new application, run:

$ briefcase new

Options

The following options can be provided at the command line.

-t <template> / --template <template>

A local directory path or URL to use as a cookiecutter template for the new project.

--template-branch <branch>

The branch of the cookiecutter template repository to use for the new project. If not specified, Briefcase will attempt
to use a template branch matching the version of Briefcase that is being used (i.e., if you’re using Briefcase 0.3.14,
Briefcase will use the v0.3.14 template branch when generating the app). If you’re using a development version of
Briefcase, Briefcase will use the main branch of the template.

-Q <KEY=VALUE>

Override the answer to a new project prompt with the provided value.

For instance, if -Q "license=MIT license is specified, then the question to choose a license will not be presented
to the user and the MIT license will be automatically used for the project. When used in conjunction with --no-input,
the provided value overrides the default answer.

The expected keys are specified by the cookiecutter template being used to create the new project. Therefore, the set of
possible keys is not listed here but should be expected to remain consistent for any specific version of Briefcase; with
version changes, though, the keys may change.

2.4. Reference 71

Briefcase Documentation, Release 0.3.18

convert

Convert an existing project with a pyproject.toml configuration into a project that can be deployed with Brief-
case. Runs a wizard to ask questions about your existing application (reading from the pyproject.toml file where
applicable), adds the necessary files to the project, and updates the pyproject.toml file to include the briefcase
section.

Usage

To convert your application, run the following command in the application root directory (where the pyproject.toml
file is located):

$ briefcase convert

Options

The following options can be provided at the command line.

-t <template> / --template <template>

A local directory path or URL to use as a cookiecutter template for the project.

--template-branch <branch>

The branch of the cookiecutter template repository to use for the project. If not specified, Briefcase will attempt to use
a template branch matching the version of Briefcase that is being used (i.e., if you’re using Briefcase 0.3.14, Briefcase
will use the v0.3.14 template branch when generating the app). If you’re using a development version of Briefcase,
Briefcase will use the main branch of the template.

-Q <KEY=VALUE>

Override the answer to a prompt with the provided value.

For instance, if -Q "license=MIT license" is specified, then the question to choose a license will not be presented
to the user and the MIT license will be automatically used for the project. When used in conjunction with --no-input,
the provided value overrides the default answer.

The expected keys are specified by the cookiecutter template being used to create a new project (the same cookiecutter
template is used here). Therefore, the set of possible keys is not listed here but should be expected to remain consistent
for any specific version of Briefcase; with version changes, though, the keys may change.

72 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

dev

Run the application in developer mode.

Usage

To run the app, run:

$ briefcase dev

The first time the application runs in developer mode, any requirements listed in a requires configuration item in
pyproject.toml will be installed into the current environment.

Options

The following options can be provided at the command line.

-a <app name> / --app <app name

Run a specific application target in your project. This argument is only required if your project contains more than one
application target. The app name specified should be the machine-readable package name for the app.

-r / --update-requirements

Update application requirements.

--no-run

Do not run the application; only install application requirements.

--test

Run the test suite in the development environment.

Passthrough arguments

If you want to pass any arguments to your app’s command line, you can specify them using the -- marker to separate
Briefcase’s arguments from your app’s arguments. For example:

$ briefcase dev -- --wiggle --test

will run the app in normal mode, passing the --wiggle and --test flags to the app’s command line. The app will
not run in Briefcase’s test mode; the --test flag will be left for your own app to interpret.

2.4. Reference 73

Briefcase Documentation, Release 0.3.18

create

Create a scaffold for an application installer. By default, targets the current platform’s default output format.

Usage

To create a scaffold for the default output format for the current platform:

$ briefcase create

To create a scaffold for a different platform:

$ briefcase create <platform>

To create a scaffold for a specific output format:

$ briefcase create <platform> <output format>

If a scaffold for the nominated platform already exists, you’ll be prompted to delete and regenerate the app.

Options

There are no additional command line options.

update

While you’re developing an application, you may need to rapidly iterate on the code, making small changes and then
re-building. The update command applies any changes you’ve made to your code to the packaged application code.

It will not update requirements or installer resources unless specifically requested.

Usage

To repackage your application’s code for the current platform’s default output format:

$ briefcase update

To repackage your application’s code for a different platform:

$ briefcase update <platform>

To repackage your application’s code for a specific output format:

$ briefcase update <platform> <output format>

74 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

Options

The following options can be provided at the command line.

-r / --update-requirements

Update application requirements.

--update-resources

Update application resources such as icons.

--update-support

Update application support package.

build

Compile/build an application. By default, targets the current platform’s default output format.

This will only compile the components necessary to run the application. It won’t necessarily result in the generation
of an installable artefact.

Usage

To build the application for the default output format for the current platform:

$ briefcase build

To build the application for a different platform:

$ briefcase build <platform>

To build the application for a specific output format:

$ briefcase build <platform> <output format>

Build tool requirements

Building for some platforms depends on the build tools for the platform you’re targeting being available on the platform
you’re using. For example, you will only be able to create iOS applications on macOS. Briefcase will check for any
required tools, and will report an error if the platform you’re targeting is not supported.

2.4. Reference 75

Briefcase Documentation, Release 0.3.18

Options

The following options can be provided at the command line.

-u / --update

Update the application’s source code before building. Equivalent to running:

$ briefcase update
$ briefcase build

-r / --update-requirements

Update application requirements before building. Equivalent to running:

$ briefcase update -r
$ briefcase build

--update-resources

Update application resources such as icons before building. Equivalent to running:

$ briefcase update --update-resources
$ briefcase build

--update-support

Update application support package before building. Equivalent to running:

$ briefcase update --update-resources
$ briefcase build

--test

Build the app in test mode in the bundled app environment. Running build --testwill also cause an update to ensure
that the packaged application contains the current test code. To prevent this update, use the --no-update option.

If you have previously run the app in “normal” mode, you may need to pass -r / --update-requirements the first
time you build in test mode to ensure that your testing requirements are present in the test app.

76 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

--no-update

Prevent the automated update of app code that is performed when specifying by the --test option.

run

Starts the application, using the packaged version of the application code. By default, targets the current platform’s
default output format.

If the output format is an executable (e.g., a macOS .app file), the run command will start that executable. If the output
is an installer, run will attempt to replicate as much as possible of the runtime environment that would be installed,
but will not actually install the app. For example, on Windows, run will use the interpreter that will be included in the
installer, and the versions of code and requirements that will be installed, but won’t run the installer to produce Start
Menu items, registry records, etc.

Test mode

The run command can also be used to execute your app’s test suite, in the packaged environment (e.g., on the iOS
simulator, or from within a Linux Flatpak). When running in test mode (using the --test option), a different entry
point will be used for the app: if your app is contained in a Python module named myapp, test mode will attempt to
launch tests.myapp. Your app is responsible for providing the logic to discover and start the test suite.

The code for your test suite can specified using the test_sources setting; test-specific requirements can be specified
with test_requires. Test sources and requirements will only be included in your app when running in test mode.

Briefcase will monitor the log output of the test suite, looking for the output corresponding to test suite completion.
Briefcase has built-in support for pytest and unittest test suites; support for other test frameworks can be added using
the test_success_regex and test_failure_regex settings.

Usage

To run your application on the current platform’s default output format:

$ briefcase run

To run your application for a different platform:

$ briefcase run <platform>

To run your application using a specific output format:

$ briefcase run <platform> <output format>

2.4. Reference 77

https://docs.pytest.org/en/latest
https://docs.python.org/3/library/unittest.html

Briefcase Documentation, Release 0.3.18

Options

The following options can be provided at the command line.

-a <app name> / --app <app name

Run a specific application target in your project. This argument is only required if your project contains more than one
application target. The app name specified should be the machine-readable package name for the app.

-u / --update

Update the application’s source code before running. Equivalent to running:

$ briefcase update
$ briefcase build
$ briefcase run

-r / --update-requirements

Update application requirements before running. Equivalent to running:

$ briefcase update -r
$ briefcase build
$ briefcase run

--update-resources

Update application resources such as icons before running. Equivalent to running:

$ briefcase update --update-resources
$ briefcase build
$ briefcase run

--update-support

Update application support package before running. Equivalent to running:

$ briefcase update --update-resources
$ briefcase build
$ briefcase run

78 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

--test

Run the app in test mode in the bundled app environment. Running run --test will also cause an update and build
to ensure that the packaged application contains the most recent test code. To prevent this update and build, use the
--no-update option.

--no-update

Prevent the automated update and build of app code that is performed when specifying by the --test option.

Passthrough arguments

If you want to pass any arguments to your app’s command line, you can specify them using the -- marker to separate
Briefcase’s arguments from your app’s arguments. For example:

briefcase run -- --wiggle --test

will run the app in normal mode, passing the --wiggle and --test flags to the app’s command line. The app will
not run in Briefcase’s test mode; the --test flag will be left for your own app to interpret.

package

Compile/build an application installer. By default, targets the current platform’s default output format.

This will produce an installable artefact.

Usage

To build an installer of the default output format for the current platform:

$ briefcase package

To build an installer for a different platform:

$ briefcase package <platform>

To build an installer for a specific output format:

$ briefcase package <platform> <output format>

Packaging tool requirements

Building installers for some platforms depends on the build tools for the platform you’re targeting being available on
the platform you’re using. For example, you will only be able to create iOS applications on macOS. Briefcase will
check for any required tools, and will report an error if the platform you’re targeting is not supported.

2.4. Reference 79

Briefcase Documentation, Release 0.3.18

Options

The following options can be provided at the command line.

-u / --update

Update and recompile the application’s code before running. Equivalent to running:

$ briefcase update
$ briefcase package

-p <format>, --packaging-format <format>

The format to use for packaging. The available packaging formats are platform dependent.

--adhoc-sign

Perform the bare minimum signing that will result in a app that can run on your local machine. This may result in no
signing, or signing with an ad-hoc signing identity. The --adhoc-sign option may be useful during development and
testing. However, care should be taken using this option for release artefacts, as it may not be possible to distribute an
ad-hoc signed app to others.

-i <identity> / --identity <identity>

The code signing identity to use when signing the app.

publish

COMING SOON

Uploads your application to a publication channel. By default, targets the current platform’s default output format,
using that format’s default publication channel.

You may need to provide additional configuration details (e.g., authentication credentials), depending on the publication
channel selected.

Usage

To publish the application artefacts for the current platform’s default output format to the default publication channel:

$ briefcase publish

To publish the application artefacts for a different platform:

$ briefcase publish <platform>

To publish the application artefacts for a specific output format:

80 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

$ briefcase publish <platform> <output format>

Options

The following options can be provided at the command line.

-c <channel> / --channel <channel>

Nominate a publication channel to use.

upgrade

Briefcase uses external tools to manage the process of packaging apps. Where possible, Briefcase will manage the
process of obtaining those tools. This is currently done for

• WiX (used by the Windows MSI backend)

• linuxdeploy (used by the Linux AppImage backend)

• Java JDK (used by the Android backed)

• Android SDK (used by the Android backend)

Over time, it may be necessary to upgrade these tools. The upgrade command provides a way to perform these
upgrades.

If you are managing your own version of these tools (e.g., if you have downloaded a version of WiX and have set the
WIX_HOME environment variable), you must manage any upgrades on your own.

Usage

To see what tools are currently being managed by Briefcase:

$ briefcase upgrade --list

To upgrade all the tools that are currently being managed by Briefcase:

$ briefcase upgrade

To upgrade a specific tool:

$ briefcase upgrade <tool_name>

2.4. Reference 81

Briefcase Documentation, Release 0.3.18

Options

The following options can be provided at the command line.

-l / --list

List the tools that are currently being managed by Briefcase.

Common options

The following options are available to all commands:

-C <KEY=VALUE> / --config <KEY=VALUE>

Override the value of an app’s configuration in pyproject.toml with the provided value.

The key will be applied after (and will therefore take precedence over) any platform or backend-specific configuration
has been merged into the app’s configuration. The key must be a “top level” TOML key. The use of dotted keys to
define nested configuration structures is not permitted.

The value passed to the setting should be valid TOML. If the value being overridden is a string, this means you must
quote the value. This may require the use of escape sequences at the command line to ensure the value provided to
Briefcase by the shell includes the quotes.

For example, to override the template used by the create command, you can use -C template=..., but the value must
be quoted:

briefcase create -C template=\"https://example.com/template\"

The only app key that cannot be overridden with -C is app_name, as it is used to identify apps.

-h / --help

Display the available options for the command, and a description of usage.

--log

Always generate a log file. A log file will always be generated if Briefcase doesn’t exit normally; however, it can
sometimes be useful to generate a log file when a command has succeeded unsuccessfully. The log file will always
contain debug level output, regardless of the -v / --verbosity option specified.

82 Chapter 2. Community

https://toml.io/en/v1.0.0#keys

Briefcase Documentation, Release 0.3.18

--no-input

Do not ask the user for input, and use default values. If a safe default behavior exists, that default will be used; otherwise,
the command will raise an error.

-v / --verbosity

The verbosity of output generated by Briefcase. -v can be specified multiple times to increase the verbosity:

• If no flag is specified, Briefcase will generate default output - enough detail to see that progress in a build is
being made without being overwhelming.

• -v generates verbose output. For example, if a command processes a list of files, “normal” verbosity will show
a progress bar as those files are processed, but verbose mode will output the name of each file being modified.

• -vv generates debug output. This will output more internal details of Briefcase operation. This includes the
command line, environment, output and return value of every tool and command that Briefcase executes as part
of a build.

• -vvv generates deep debug output. This will include the verbose output of all commands that Briefcase has
invoked.

-V / --version

Print the version of Briefcase being used.

2.4.4 Platform support

macOS

The default output format for macOS is an app.

Briefcase also supports creating an Xcode project which in turn can be used to build an app.

Both output formats support packaging as a macOS DMG or as a standalone signed app bundle.

.app bundle

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

A macOS .app bundle is a collection of directory with a specific layout, and with some key metadata. If this structure
and metadata exists, macOS treats the folder as an executable file, giving it an icon.

.app bundles can be copied around as if they are a single file. They can also be compressed to reduce their size for
transport.

By default, apps will be both signed and notarized when they are packaged.

2.4. Reference 83

Briefcase Documentation, Release 0.3.18

Packaging format

Briefcase supports two packaging formats for a macOS .app bundle:

1. A DMG that contains the .app bundle (the default output of briefcase package macOS, or by using
briefcase package macOS -p dmg); or

2. A zipped .app folder (using briefcase package macOS -p app).

Icon format

macOS .app bundles use .icns format icons.

macOS .app bundles do not support splash screens or installer images.

Additional options

The following options can be provided at the command line when packaging macOS apps.

--no-notarize

Do not submit the application for notarization. By default, apps will be submitted for notarization unless they have
been signed with an ad-hoc signing identity.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.macOS.app section of your
pyproject.toml file.

entitlement

A property whose sub-attributes define keys that will be added to the app’s Entitlements.plist file. Each entry
will be converted into a key in the entitlements file. For example, specifying:

entitlement."com.apple.vm.networking" = true

will result in an Entitlements.plist declaration of:

<key>com.apple.vm.networking</key><true/>

Any Boolean or string value can be used for an entitlement value.

All macOS apps are automatically granted the following entitlements:

• com.apple.security.cs.allow-unsigned-executable-memory

• com.apple.security.cs.disable-library-validation

You can disable these default entitlements by defining them manually. For example, to enable library validation, you
could add the following to your pyproject.toml:

entitlement."com.apple.security.cs.disable-library-validation" = false

84 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

info

A property whose sub-attributes define keys that will be added to the app’s Info.plist file. Each entry will be
converted into a key in the entitlements file. For example, specifying:

info."NSAppleScriptEnabled" = true

will result in an Info.plist declaration of:

<key>NSAppleScriptEnabled</key><true/>

Any Boolean or string value can be used for an Info.plist value.

universal_build

A Boolean, indicating whether Briefcase should build a universal app (i.e, an app that can target both x86_64 and
ARM64). Defaults to true; if false, the binary will only be executable on the host platform on which it was built -
i.e., if you build on an x86_64 machine, you will produce an x86_65 binary; if you build on an ARM64 machine, you
will produce an ARM64 binary.

Permissions

Briefcase cross platform permissions map to a combination of info and entitlement keys:

• microphone: an entitlement of com.apple.security.device.audio-input

• camera: an entitlement of com.apple.security.device.camera

• coarse_location: an info entry for NSLocationUsageDescription (ignored if background_location
or fine_location is defined); plus an entitlement of com.apple.security.personal-information.
location

• fine_location: an info entry for NSLocationUsageDescription``(ignored if
``background_location is defined); plus an entitlement of com.apple.security.
personal-information.location

• background_location: an info entry for NSLocationUsageDescription; plus an entitlement of com.
apple.security.personal-information.location

• photo_library: an entitlement of com.apple.security.personal-information.photos-library

Platform quirks

Packaging with --adhoc-sign

Using the --adhoc-sign option on macOS produces an app that will be able to run on your own machine, but won’t
run on any other computer. In order to distribute your app to other users, you will need to sign the app with a full
signing identity.

2.4. Reference 85

Briefcase Documentation, Release 0.3.18

macOS Xcode project

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

Briefcase supports creating a full Xcode project for a macOS app. This project can then be used to build an actual app
bundle, with the briefcase build command or directly from Xcode.

By default, apps will be both signed and notarized when they are packaged.

Packaging format

Briefcase supports two packaging formats for a macOS Xcode project:

1. A DMG that contains the .app bundle (the default output of briefcase package macOS Xcode, or by using
briefcase package macOS Xcode -p dmg); or

2. A zipped .app folder (using briefcase package macOS Xcode -p app).

Icon format

macOS Xcode projects use .png format icons. An application must provide icons of the following sizes:

• 16px

• 32px

• 64px

• 128px

• 256px

• 512px

• 1024px

macOS Xcode projects do not support splash screens.

Additional options

The following options can be provided at the command line when packaging macOS apps.

86 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

--no-notarize

Do not submit the application for notarization. By default, apps will be submitted for notarization unless they have
been signed with an ad-hoc signing identity.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.macOS.Xcode section of your
pyproject.toml file.

entitlement

A property whose sub-attributes define keys that will be added to the app’s Entitlements.plist file. Each entry
will be converted into a key in the entitlements file. For example, specifying:

entitlement."com.apple.vm.networking" = true

will result in an Entitlements.plist declaration of:

<key>com.apple.vm.networking</key><true/>

Any Boolean or string value can be used for an entitlement value.

All macOS apps are automatically granted the following entitlements:

• com.apple.security.cs.allow-unsigned-executable-memory

• com.apple.security.cs.disable-library-validation

You can disable these default entitlements by defining them manually. For example, to enable library validation, you
could add the following to your pyproject.toml:

entitlement."com.apple.security.cs.disable-library-validation" = false

info

A property whose sub-attributes define keys that will be added to the app’s Info.plist file. Each entry will be
converted into a key in the entitlements file. For example, specifying:

info."NSAppleScriptEnabled" = true

will result in an Info.plist declaration of:

<key>NSAppleScriptEnabled</key><true/>

Any Boolean or string value can be used for an Info.plist value.

2.4. Reference 87

Briefcase Documentation, Release 0.3.18

universal_build

A Boolean, indicating whether Briefcase should build a universal app (i.e, an app that can target both x86_64 and
ARM64). Defaults to true; if false, the binary will only be executable on the host platform on which it was built -
i.e., if you build on an x86_64 machine, you will produce an x86_65 binary; if you build on an ARM64 machine, you
will produce an ARM64 binary.

Permissions

Briefcase cross platform permissions map to a combination of info and entitlement keys:

• microphone: an entitlement of com.apple.security.device.audio-input

• camera: an entitlement of com.apple.security.device.camera

• coarse_location: an info entry for NSLocationUsageDescription (ignored if background_location
or fine_location is defined); plus an entitlement of com.apple.security.personal-information.
location

• fine_location: an info entry for NSLocationUsageDescription``(ignored if
``background_location is defined); plus an entitlement of com.apple.security.
personal-information.location

• background_location: an info entry for NSLocationUsageDescription; plus an entitlement of com.
apple.security.personal-information.location

• photo_library: an entitlement of com.apple.security.personal-information.photos-library

Platform quirks

Packaging with --adhoc-sign

Using the --adhoc-sign option on macOS produces an app that will be able to run on your own machine, but won’t
run on any other computer. In order to distribute your app to other users, you will need to sign the app with a full
signing identity.

Windows

The default output format for Windows is an app.

Briefcase also supports creating a Visual Studio project which in turn can be used to build an app.

Both output formats support packaging as a Microsoft Software Installer (MSI) or as a ZIP file.

Windows App

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

88 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

A Windows app is a stub binary, allow with a collection of folders that contain the Python code for the app and the
Python runtime libraries.

Packaging format

Briefcase supports two packaging formats for a Windows app:

1. As an MSI installer (the default output of briefcase package windows, or by using briefcase package
windows -p msi); or

2. As a ZIP file containing all files needed to run the app (by using briefcase package windows -p zip).

Briefcase uses the WiX Toolset to build an MSI installer for a Windows App. WiX, in turn, requires that .NET Frame-
work 3.5 is enabled. To ensure .NET Framework 3.5 is enabled:

1. Open the Windows Control Panel

2. Traverse to Programs -> Programs and Features

3. Select “Turn Windows features On or Off”

4. Ensure that “.NET framework 3.5 (includes .NET 2.0 and 3.0)” is selected.

Icon format

Windows apps installers use multi-format .ico icons; these icons should contain images in the following sizes:

• 16px

• 32px

• 48px

• 64px

• 256px

Windows Apps do not support splash screens or installer images.

Additional options

The following options can be provided at the command line when packaging Windows apps.

--file-digest <digest>

The digest algorithm to use for code signing files in the project. Defaults to sha256.

2.4. Reference 89

https://wixtoolset.org/

Briefcase Documentation, Release 0.3.18

--use-local-machine-stores

By default, the certificate for code signing is assumed to be in the Current User’s certificate stores. Use this flag to
indicate the certificate is in the Local Machine’s certificate stores.

--cert-store <store>

The internal Windows name for the certificate store containing the certificate for code signing. Defaults to My.

Common Stores:

Personal My
Intermediate Certification Authorities CA
Third-Party Root Certification Authorities AuthRoot
Trusted People TrustedPeople
Trusted Publishers TrustedPublisher
Trusted Root Certification Authorities Root

--timestamp-url <url>

The URL of the Timestamp Authority server to timestamp the code signing. Defaults to http://timestamp.
digicert.com.

--timestamp-digest <url>

The digest algorithm to request the Timestamp Authority server uses for the timestamp for code signing. Defaults to
sha256.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.windows section of your pyproject.
toml file.

system_installer

Controls whether the app will be installed as a per-user or per-machine app. Per-machine apps are “system” apps,
and require admin permissions to run the installer; however, they are installed once and shared between all users on a
computer.

If true the installer will attempt to install the app as a per-machine app, available to all users. If false, the installer
will install as a per-user app. If undefined the installer will ask the user for their preference.

90 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

use_full_install_path

Controls whether the app will be installed using a path which includes both the application name and the company
or developer’s name. If true (the default), the app will be installed to Program Files\<Author Name>\<Project
Name>. If false, it will be installed to Program Files\<Project Name>. Using the full path makes sense for larger
companies with multiple applications, but less so for a solo developer.

version_triple

Python and Briefcase allow any valid PEP440 version number as a version specifier. However, MSI installers require a
strict integer triple version number. Many PEP440-compliant version numbers, such as “1.2”, “1.2.3b3”, and “1.2.3.4”,
are invalid for MSI installers.

Briefcase will attempt to convert your version into a valid MSI value by extracting the first three parts of the main
series version number (excluding pre, post and dev version indicators), padding with zeros if necessary:

• 1.2 becomes 1.2.0

• 1.2b4 becomes 1.2.0

• 1.2.3b3 becomes 1.2.3

• 1.2.3.4 becomes 1.2.3.

However, if you need to override this default value, you can define version_triple in your app settings. If provided,
this value will be used in the MSI configuration file instead of the auto-generated value.

Platform quirks

Use caution with --update-support

Care should be taken when using the --update-support option to the update, build or run commands. Support
packages in Windows apps are overlaid with app content, so it isn’t possible to remove all old support files before
installing new ones.

Briefcase will unpack the new support package without cleaning up existing support package content. This should
work; however, ensure a reproducible release artefacts, it is advisable to perform a clean app build before release.

Packaging with --adhoc-sign

Using the --adhoc-sign option on Windows results in no signing being performed on the packaged app. This will
result in your application being flagged as coming from an unverified publisher. This may limit who is able to install
your app.

2.4. Reference 91

https://peps.python.org/pep-0440/

Briefcase Documentation, Release 0.3.18

Visual Studio project

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

Briefcase supports creating a full Visual Studio project for a Windows App. This project can then be used to build the
stub app binary with the briefcase build command, or directly from Visual Studio.

Building the Visual Studio project requires that you install Visual Studio 2022 or later. Visual Studio 2022 Community
Edition can be downloaded for free from Microsoft. You can also use the Professional or Enterprise versions if you
have them.

Briefcase will auto-detect the location of your Visual Studio installation, provided one of the following three things are
true:

1. You install Visual Studio in the standard location in your Program Files folder.

2. MSBuild.exe is on your path.

3. You define the environment variable MSBUILD that points at the location of your MSBuild.exe executable.

When you install Visual Studio, there are many optional components. You should ensure that you have installed the
following:

• .NET Desktop Development - All default packages

• Desktop Development with C++ - All default packages - C++/CLI support for v143 build tools

Packaging format

Briefcase supports two packaging formats for a Windows app:

1. As an MSI installer (the default output of briefcase package windows VisualStudio, or by using
briefcase package windows VisualStudio -p msi); or

2. As a ZIP file containing all files needed to run the app (by using briefcase package windows
VisualStudio -p zip).

Briefcase uses the WiX Toolset to build an MSI installer for a Windows App. WiX, in turn, requires that .NET Frame-
work 3.5 is enabled. To ensure .NET Framework 3.5 is enabled:

1. Open the Windows Control Panel

2. Traverse to Programs -> Programs and Features

3. Select “Turn Windows features On or Off”

4. Ensure that “.NET framework 3.5 (includes .NET 2.0 and 3.0)” is selected.

92 Chapter 2. Community

https://visualstudio.microsoft.com/vs/community/
https://wixtoolset.org/

Briefcase Documentation, Release 0.3.18

Icon format

Windows apps installers use multi-format .ico icons; these icons should contain images in the following sizes:

• 16px

• 32px

• 48px

• 64px

• 256px

Windows Apps do not support splash screens or installer images.

Additional options

The following options can be provided at the command line when packaging Windows apps.

--file-digest <digest>

The digest algorithm to use for code signing files in the project. Defaults to sha256.

--use-local-machine-stores

By default, the certificate for code signing is assumed to be in the Current User’s certificate stores. Use this flag to
indicate the certificate is in the Local Machine’s certificate stores.

--cert-store <store>

The internal Windows name for the certificate store containing the certificate for code signing. Defaults to My.

Common Stores:

Personal My
Intermediate Certification Authorities CA
Third-Party Root Certification Authorities AuthRoot
Trusted People TrustedPeople
Trusted Publishers TrustedPublisher
Trusted Root Certification Authorities Root

2.4. Reference 93

Briefcase Documentation, Release 0.3.18

--timestamp-url <url>

The URL of the Timestamp Authority server to timestamp the code signing. Defaults to http://timestamp.
digicert.com.

--timestamp-digest <url>

The digest algorithm to request the Timestamp Authority server uses for the timestamp for code signing. Defaults to
sha256.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.windows section of your pyproject.
toml file.

system_installer

Controls whether the app will be installed as a per-user or per-machine app. Per-machine apps are “system” apps,
and require admin permissions to run the installer; however, they are installed once and shared between all users on a
computer.

If true the installer will attempt to install the app as a per-machine app, available to all users. If false, the installer
will install as a per-user app. If undefined the installer will ask the user for their preference.

use_full_install_path

Controls whether the app will be installed using a path which includes both the application name and the company
or developer’s name. If true (the default), the app will be installed to Program Files\<Author Name>\<Project
Name>. If false, it will be installed to Program Files\<Project Name>. Using the full path makes sense for larger
companies with multiple applications, but less so for a solo developer.

version_triple

Python and Briefcase allow any valid PEP440 version number as a version specifier. However, MSI installers require a
strict integer triple version number. Many PEP440-compliant version numbers, such as “1.2”, “1.2.3b3”, and “1.2.3.4”,
are invalid for MSI installers.

Briefcase will attempt to convert your version into a valid MSI value by extracting the first three parts of the main
series version number (excluding pre, post and dev version indicators), padding with zeros if necessary:

• 1.2 becomes 1.2.0

• 1.2b4 becomes 1.2.0

• 1.2.3b3 becomes 1.2.3

• 1.2.3.4 becomes 1.2.3.

However, if you need to override this default value, you can define version_triple in your app settings. If provided,
this value will be used in the MSI configuration file instead of the auto-generated value.

94 Chapter 2. Community

https://peps.python.org/pep-0440/

Briefcase Documentation, Release 0.3.18

Platform quirks

Use caution with --update-support

Care should be taken when using the --update-support option to the update, build or run commands. Support
packages in Windows apps are overlaid with app content, so it isn’t possible to remove all old support files before
installing new ones.

Briefcase will unpack the new support package without cleaning up existing support package content. This should
work; however, ensure a reproducible release artefacts, it is advisable to perform a clean app build before release.

Packaging with --adhoc-sign

Using the --adhoc-sign option on Windows results in no signing being performed on the packaged app. This will
result in your application being flagged as coming from an unverified publisher. This may limit who can (or is willing
to) install your app.

Linux

Briefcase supports packaging Linux apps as native system packages, as an AppImage, and in Flatpak format.

The default output format for Linux is system packages.

Native System Packages

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

All modern Linux distributions have a native format for distributing packages that are integrated into their overall
operating system:

• .deb, used by Debian, Ubuntu, Mint (and others)

• .rpm, used by Red Hat, Fedora, CentOS, AlmaLinux, openSUSE (and others)

• .pkg.tar.zst, used by Arch Linux and Manjaro Linux

The Briefcase system backend provides a way to build your app in these system package formats.

Not all Linux distributions are supported!

Briefcase cannot reliably identify every Linux vendor. If your Linux distribution isn’t being identified (or isn’t being
identified correctly), please open a ticket with the contents of your /etc/os-release file.

The packaged app includes a stub binary, so that the app will appear in process lists using your app’s name. It also
includes a FreeDesktop registration so the app will appear in system menus.

When installed from a Briefcase-produced system package, the app will use the system Python install, and the standard
library provided by the system. However, the app will be isolated from any packages that have been installed at a system
level.

2.4. Reference 95

https://appimage.org
https://flatpak.org
https://github.com/beeware/briefcase/issues

Briefcase Documentation, Release 0.3.18

As the app uses the system Python, system packages are highly dependent on the distribution version. It is therefore
necessary to build a different system package for every distribution you want to target. To help simplify this process,
Briefcase uses Docker to provide build environments. Using these Docker environments, it is possible to build a system
package for any target distribution and version, regardless of the host distribution and version - that is, you can build a
Debian Buster package on an Ubuntu 20.04 machine, or an Ubuntu 22.04 package on a RHEL8 machine.

The usage of the system Python also means that system packages are different from most other Briefcase-packaged
apps. On other target platforms (macOS and Windows apps, Linux AppImage, etc), the version of Python used to run
Briefcase will be the version of Python used by the bundled app. However, when building a system package, Briefcase
will use the operating system’s Python3 installation for system packages, regardless of the host Python version. This
means you will need to perform additional platform testing to ensure that your app is compatible with that version of
Python.

Icon format

Deb packages uses .png format icons. An application must provide icons in the following sizes:

• 16px

• 32px

• 64px

• 128px

• 256px

• 512px

Linux System packages do not support splash screens or installer images.

Additional files

The Linux system app template includes a LICENSE and CHANGELOG file, with stub content. When the application is
generated from template, Briefcase will look in the project root folder (i.e., the folder that contains your pyproject.
toml) for files with the same name. If these files are found, they will be copied into your project. You should ensure
these files are complete and correct before publishing your app.

The Linux system app template also includes an initial draft manfile for your app. This manfile will be populated with
the description and long_description of your app. You may wish to add more details on app usage.

Additional options

The following options can be provided at the command line when producing Deb packages:

96 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

--target

A Docker base image identifier for the Linux distribution you want to target. The identifier will be in the pattern
<vendor>:<codename> (e.g., debian:buster or ubuntu:jammy). You can also use the version number in place
of the code name (e.g., debian:10, ubuntu:22.04, or fedora:37). Whichever form you choose, you should be
consistent; no normalization of code name and version is performed, so ubuntu:jammy and ubuntu:22.04 will be
identified as different versions (even though they the same version).

You can specify any identifier you want, provided the distribution is still supported by the vendor, and system Python
is Python 3.8 or later.

The following Linux vendors are known to work as Docker targets:

• Debian (e.g., debian:bookworm or debian:12)

• Ubuntu (e.g., ubuntu:jammy or ubuntu:22.04)

• Fedora (e.g, fedora:39)

• AlmaLinux (e.g., almalinux:9)

• Red Hat Enterprise Linux (e.g., redhat/ubi9:9)

• openSUSE Tumbleweed (e.g., "opensuse/tumbleweed:latest")

• Arch Linux (e.g., archlinux:latest)

• Manjaro Linux (e.g., manjarolinux/base:latest)

--Xdocker-build=<value>

A configuration argument to be passed to the Docker build command for the app image. For example, to provide an
additional build argument to the Dockerfile, specify --Xdocker-build=--build-arg=ARG=value. See the Docker
build documentation for details on the full list of options that can be provided.

You may specify multiple --Xdocker-build arguments; each one specifies a single argument to pass to Docker, in
the order they are specified.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.linux.system section of your
pyproject.toml file; if defined in this section, the values will apply for all Linux distributions for which you build
packages.

If you need to override these settings for a specific target vendor, or for a specific distribution version, you can provide
increasingly specific sections for vendor and version information. Each distribution is identified by:

• Vendor base (e.g., debian, rhel, arch, suse)

• Vendor (e.g, debian, ubuntu, rhel, fedora, opensuse-tumbleweed, arch, manjaro). The vendor identifier
may be the same as the vendor base (e.g, in the case of Debian, Red Hat, or Arch)

• Code name (e.g., a version number, or jammy).

For example, a full configuration for myapp running on Ubuntu 22.04 (jammy) would consist of the following sections:

• tool.briefcase.app.myapp providing global configuration options

• tool.briefcase.app.myapp.linux providing definitions common to all Linux packaging backends

• tool.briefcase.app.myapp.linux.system providing definitions for all Linux system package targets

2.4. Reference 97

https://docs.docker.com/engine/reference/commandline/image_build/#options
https://docs.docker.com/engine/reference/commandline/image_build/#options

Briefcase Documentation, Release 0.3.18

• tool.briefcase.app.myapp.linux.system.debian providing definitions common to all Debian-based
packaging targets

• tool.briefcase.app.myapp.linux.system.ubuntu providing definitions common to all Ubuntu-based
packaging targets

• tool.briefcase.app.myapp.linux.system.ubuntu.jammy providing definitions specific to for Ubuntu
22.04 (Jammy).

These configurations will be merged at runtime; any version-specific definitions will override the generic vendor defi-
nitions; any vendor definitions will override the vendor-base definitions; and any vendor-base definitions will override
generic system package definitions.

system_requires

A list of operating system packages that must be installed for the system package build to succeed. If a Docker build
is requested, this list will be passed to the Docker context when building the container for the app build. These en-
tries should be the format the target Linux distribution will accept. For example, if you’re using a Debian-derived
distribution, you might use:

system_requires = ["libgirepository1.0-dev", "libcairo2-dev"]

to make the GTK GI and Cairo operating system development packages available to your app. However, if you’re on a
RedHat-derived distribution, you would use:

system_requires = ["gobject-introspection-devel", "python3-cairo-devel"]

If you see errors during briefcase build of the form:

Could not find dependency: libSomething.so.1

but the app works under briefcase dev, the problem may be an incomplete system_requires definition. The
briefcase build process generates a new environment that is completely isolated from your development environ-
ment, so if your app has any operating system dependencies, they must be listed in your system_requires definition.

system_requires are the packages required at build time. To specify runtime system requirements, use the
system_runtime_requires setting.

system_runtime_requires

A list of system packages that your app requires at runtime. These will be closely related to the system_requires
setting, but will likely be different; most notably, you will probably need -dev packages at build time, but non -dev
packages at runtime.

system_runtime_requires should be specified as system package requirements; they can optionally include version
pins. Briefcase will automatically include the dependencies needed for Python. For example:

system_runtime_requires = ["libgtk-3-0 (>=3.14)", "libwebkit2gtk-4.1-0"]

will specify that your app needs Python 3, a version of libgtk >= 3.14, and any version of libwebkit2gtk.

Any problems with installing or running your system package likely indicate an issue with your
system_runtime_requires definition.

98 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

system_section

When an application is published as a .deb file, Debian requires that you specify a “section”, describing a classification
of the application area. The template will provide a default section of utils; if you want to override that default, you
can specify a value for system_section. For details on the allowed values for system_section, refer to the Debian
Policy Manual.

dockerfile_extra_content

Any additional Docker instructions that are required to configure the container used to build your Python app. For
example, any dependencies that cannot be configured with apt-get could be installed. dockerfile_extra_content
is string literal that will be added verbatim to the end of the project Dockerfile.

Any Dockerfile instructions added by dockerfile_extra_content will be executed as the brutus user, rather than
the root user. If you need to perform container setup operations as root, switch the container’s user to root, perform
whatever operations are required, then switch back to the brutus user - e.g.:

dockerfile_extra_content = """
RUN <first command run as brutus>

USER root
RUN <second command run as root>

USER brutus
"""

AppImage

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

Best effort support

AppImage has a number of significant issues building images for GUI apps. It is incompatible with the use of binary
wheels, and the use of an older Linux base image for compatibility purposes is incompatible with using modern GUI
frameworks. Even when a GUI toolkit can be installed, the AppImage packaging process frequently introduces bugs
related to DBus integration or libraries like WebKit2 that use subprocesses.

Briefcase provides an AppImage backend for historical reasons, but we strongly discourage the use of AppImages for
distribution. We maintain unit test coverage for the AppImage backend, but we do not build AppImages as part of
our release process. We will accept bug reports related to AppImage support, and we will merge PRs that address
AppImage support, but the core team does not consider addressing AppImage bugs a priority.

If you need to distribute a Linux app, System packages or Flatpaks are much more reliable options.

AppImage provides a way for developers to provide “native” binaries for Linux users. It allow packaging applications
for any common Linux based operating system, including Ubuntu, Debian, Fedora, and more. AppImages contain all

2.4. Reference 99

https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-section
https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-section
https://appimage.org

Briefcase Documentation, Release 0.3.18

the dependencies that cannot be assumed to be part of each target system, and will run on most Linux distributions
without further modifications. Briefcase uses Linuxdeploy to build the AppImage in the correct format.

Packaging binaries for Linux is complicated, because of the inconsistent library versions present on each distribution.
An AppImage can be executed on any Linux distribution with a version of libc greater than or equal the version of
the distribution where the AppImage was created.

To ensure that an application is built in an environment that is as compatible as possible, Briefcase builds AppImages
inside Docker. The Docker base image used by Briefcase can be configured to any manylinux base using the manylinux
application configuration option; if manylinux isn’t specified, it falls back to an Ubuntu 18.04 base image. While it
is possible to build AppImages without Docker, it is highly recommended that you do not, as the resulting AppImages
will not be as portable as they could otherwise be.

Note: AppImage works by attempting to autodetect all the libraries that an application requires, copying those libraries
into a distribution, and manipulating them to reflect their new locations. This approach can work well. . . but it is also
prone to major problems. Python apps (which load their dependencies dynamically) are particularly prone to exposing
those flaws.

Briefcase makes a best-effort attempt to use the AppImage tools to build a binary, but sometimes, the problem lies
with AppImage itself. If you have problems with AppImage binaries, you should first check whether the problem is a
limitation with AppImage.

Icon format

AppImages use .png format icons. An application must provide icons in the following sizes:

• 16px

• 32px

• 64px

• 128px

• 256px

• 512px

AppImages do not support splash screens or installer images.

Additional options

The following options can be provided at the command line when producing AppImages.

--no-docker

Use native execution, rather than using Docker to start a container.

100 Chapter 2. Community

https://github.com/linuxdeploy/linuxdeploy
https://github.com/pypa/manylinux

Briefcase Documentation, Release 0.3.18

--Xdocker-build=<value>

A configuration argument to be passed to the Docker build command for the app image. For example, to provide an
additional build argument to the Dockerfile, specify --Xdocker-build=--build-arg=ARG=value. See the Docker
build documentation for details on the full list of options that can be provided.

You may specify multiple --Xdocker-build arguments; each one specifies a single argument to pass to Docker, in
the order they are specified.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.linux.appimage section of your
pyproject.toml file.

manylinux

The manylinux tag to use as a base image when building the AppImage. Should be one of:

• manylinux1

• manylinux2010

• manylinux2014

• manylinux2_24

• manylinux2_28

New projects will default to manylinux2014. If an application doesn’t specify a manylinux value, ubuntu:18.04
will be used as the base image.

manylinux_image_tag

The specific tag of the manylinux image to use. Defaults to latest.

system_requires

A list of operating system packages that must be installed for the AppImage build to succeed. If a Docker build is
requested, this list will be passed to the Docker context when building the container for the app build. By default,
entries should be Ubuntu 18.04 apt package requirements. For example:

system_requires = ['libgirepository1.0-dev', 'libcairo2-dev']

would make the GTK GI and Cairo operating system libraries available to your app.

If you see errors during briefcase build of the form:

Could not find dependency: libSomething.so.1

but the app works under briefcase dev, the problem may be an incomplete system_requires definition. The
briefcase build process generates a new environment that is completely isolated from your development environ-
ment, so if your app has any operating system dependencies, they must be listed in your system_requires definition.

2.4. Reference 101

https://docs.docker.com/engine/reference/commandline/image_build/#options
https://docs.docker.com/engine/reference/commandline/image_build/#options
https://github.com/pypa/manylinux

Briefcase Documentation, Release 0.3.18

linuxdeploy_plugins

A list of linuxdeploy plugins that you wish to be included when building the AppImage. This is needed for applications
that depend on libraries that have dependencies that cannot be automatically discovered by Linuxdeploy. GTK and Qt
both have complex runtime resource requirements that can be difficult for Linuxdeploy to identify automatically.

The linuxdeploy_plugins declaration is a list of strings. Briefcase can take plugin definitions in three formats:

1. The name of a plugin known by Briefcase. One of gtk or qt.

2. A URL where a plugin can be downloaded

3. A path to a local plugin file

If your plugin requires an environment variable for configuration, that environment variable can be provided as a prefix
to the plugin declaration, similar to how environment variables can be defined for a shell command.

For example, the gtk plugin requires the DEPLOY_GTK_VERSION environment variable. To set this variable with the
Briefcase-managed GTK Linuxdeploy plugin, you would define:

linuxdeploy_plugins = ["DEPLOY_GTK_VERSION=3 gtk"]

Or, if you were using a plugin stored as a local file:

linuxdeploy_plugins = ["DEPLOY_GTK_VERSION=3 path/to/plugins/linuxdeploy-gtk-plugin.sh"]

dockerfile_extra_content

Any additional Docker instructions that are required to configure the container used to build your Python app. For
example, any dependencies that cannot be configured with apt-get could be installed. dockerfile_extra_content
is string literal that will be added verbatim to the end of the project Dockerfile.

Any Dockerfile instructions added by dockerfile_extra_content will be executed as the brutus user, rather than
the root user. If you need to perform container setup operations as root, switch the container’s user to root, perform
whatever operations are required, then switch back to the brutus user - e.g.:

dockerfile_extra_content = """
RUN <first command run as brutus>

USER root
RUN <second command run as root>

USER brutus
"""

Platform quirks

Use caution with --update-support

Care should be taken when using the --update-support option to the update, build or run commands. Support
packages in Linux AppImages are overlaid with app content, so it isn’t possible to remove all old support files before
installing new ones.

Briefcase will unpack the new support package without cleaning up existing support package content. This should
work; however, ensure a reproducible release artefacts, it is advisable to perform a clean app build before release.

102 Chapter 2. Community

https://docs.appimage.org/packaging-guide/from-source/linuxdeploy-user-guide.html#plugin-system

Briefcase Documentation, Release 0.3.18

Apps using WebKit2 are not supported

WebKit2, the library that provides web widget support, can’t currently be deployed with AppImage. WebKit2 uses
subprocesses to manage network and rendering requests, but the way it packages and launches these subprocesses isn’t
currently compatible with AppImage.

In addition, many of the commonly used manylinux base images predate the release of WebKit2. As a result, sys-
tem packages providing WebKit2 are not available on these base images. manylinux_2_28 is the earliest supported
manylinux image that provides WebKit2 support.

Runtime issues with AppImages

Packaging on Linux is a difficult problem - especially when it comes to binary libraries. The following are some
common problems you may see, and ways that they can be mitigated.

Failure to load libpango-1.0-so.0

Older Linux distributions (e.g., Ubuntu 18.04) may not be compatible with AppImages of Toga apps pro-
duced by Briefcase, complaining about problems with libpango-1.0.so.0 and an undefined symbols
(fribidi_get_par_embedding_levels_ex is a common missing symbol to be reported). This is caused because
the version of fribidi provided by these distributions. Unfortunately, there’s no way to fix this limitation.

Undefined symbol and Namespace not available errors

If you get the error:

ValueError: Namespace Something not available

or:

ImportError: /usr/lib/libSomething.so.0: undefined symbol: some_symbol

it is likely that one or more of the libraries you are using in your app requires a Linuxdeploy plugin. GUI libraries, or
libraries that do dynamic module loading are particularly prone to this problem.

ELF load command address/offset not properly aligned

Briefcase uses a tool named Linuxdeploy to build AppImages. Linuxdeploy processes all the libraries used by an app
so that they can be relocated into the final packaged binary. Building a manylinux binary wheel involves a tool named
auditwheel that performs a very similar process. Unfortunately, processing a binary with Linuxdeploy after it has
been processed by auditwheel can result in a binary library that cannot be loaded at runtime.

This is particularly common when a module installed as a binary wheel has a dependency on external libraries. For
example, Pillow is a Python library that contains a binary submodule; that submodule uses libpng, libtiff, and
other system libraries for image manipulation. If you install Pillow from a manylinux wheel, you may see an error
similar to the following at runtime:

Traceback (most recent call last):
File "/tmp/.mount_TestbewwDi98/usr/app/testbed/app.py", line 54, in main
test()

(continues on next page)

2.4. Reference 103

Briefcase Documentation, Release 0.3.18

(continued from previous page)

File "/tmp/.mount_TestbewwDi98/usr/app/testbed/linux.py", line 94, in test_pillow
from PIL import Image

File "/tmp/.mount_TestbewwDi98/usr/app_packages/PIL/Image.py", line 132, in <module>
from . import _imaging as core

ImportError: libtiff-d0580107.so.5.7.0: ELF load command address/offset not properly␣
→˓aligned

This indicates that one of the libraries that has been included in the AppImage has become corrupted as a result of
double processing.

The solution is to ask Briefcase to install the affected library from source. This can be done by adding a "--no-binary"
entry to the requires declaration for your app. For example, if your app includes Pillow as a requirement:

requires = ["pillow==9.1.0"]

You can force Briefcase to install Pillow from source by adding:

requires = [
"pillow==9.1.0",
"--no-binary", "pillow",

]

Since the library will be installed from source, you also need to add any system requirements that are needed to compile
the binary library. For example, Pillow requires the development libraries for the various image formats that it uses:

system_requires = [
... other system requirements ...
"libjpeg-dev",
"libpng-dev",
"libtiff-dev",

]

If you are missing a system requirement, the call to briefcase build will fail with an error:

error: subprocess-exited-with-error

× pip subprocess to install build dependencies did not run successfully.
exit code: 1

> See above for output.

note: This error originates from a subprocess, and is likely not a problem with pip.
>>> Return code: 1

Unable to install requirements. This may be because one of your
requirements is invalid, or because pip was unable to connect
to the PyPI server.

You must add a separate --no-binary option for every binary library you want to install from source. For example,
if your app also includes the cryptography library, and you want to install that library from source, you would add:

requires = [
"pillow==9.1.0",
"cryptography==37.0.2",
"--no-binary", "pillow",

(continues on next page)

104 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

(continued from previous page)

"--no-binary", "cryptography",
]

If you want to force all packages to be installed from source, you can add a single :all declaration:

requires = [
"pillow==9.1.0",
"cryptography==37.0.2",
"--no-binary", ":all:",

]

The --no-binary declaration doesn’t need to be added to the same requires declaration that defines the require-
ment. For example, if you have a library that is used on all platforms, the declaration will probably be in the top-level
requires, not the platform-specific requires. If you add --no-binary in the top-level requires, the use of a binary
wheel would be prevented on all platforms. To avoid this, you can add the requirement in the top-level requires, but
add the --no-binary declaration to the Linux-specific requirements:

[tool.briefcase.app.helloworld]
formal_name = "Hello World"
...
requires = [

"pillow",
]

[tool.briefcase.app.helloworld.linux]
requires = [

"--no-binary", "pillow"
]

Flatpak

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

Flatpak provides a way for developers to distribute apps to Linux users in a format that is independent of the specific
distribution used by the end-user. It allow packaging applications for use on any common Linux distribution, including
Ubuntu, Debian, Fedora, and more. There are some system packages needed to run and build Flatpaks; see the Flatpak
setup guide for more details.

A Flatpak app is built by compiling against a runtime. Runtimes provide the basic dependencies that are used by
applications. Each application must be built against a runtime, and this runtime must be installed on a host system in
order for the application to run (Flatpak can automatically install the runtime required by an application).

The end user will install the Flatpak into their local app repository; this can be done by installing directly from a single
file .flatpak bundle, or by installing from a package repository like Flathub. Apps can be installed into user-space,
or if the user has sufficient privileges, they can be installed into a system-wide app repository.

Briefcase currently supports creating .flatpak single file bundles; end users can install the app bundle by running:

2.4. Reference 105

https://flatpak.org
https://flatpak.org/setup
https://flatpak.org/setup
https://flathub.org

Briefcase Documentation, Release 0.3.18

$ flatpak install --user App_Name-1.2.3-x86_64.flatpak

substituting the name of the flatpak file as appropriate. The --user option can be omitted if the user wants to install
the app system-wide.

The app can then be run with:

$ flatpak run com.example.appname

specifying the app bundle identifier as appropriate.

Briefcase can be published to Flathub or another Flatpak repository; but Briefcase does not currently support automated
publication of apps.

Icon format

Flatpak uses .png format icons. An application must provide icons in the following sizes:

• 16px

• 32px

• 64px

• 128px

• 256px

• 512px

Flatpaks do not support splash screens or installer images.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.linux.flatpak section of your
pyproject.toml file:

finish_arg

The arguments used to configure the Flatpak sandbox. finish_arg is an attribute that can have additional sub-
attributes; each sub-attribute maps to a single property that will be added to the app’s manifest. For example, to
add --allow=bluetooth as a finish argument, you would specify:

finish_arg."allow=bluetooth" = True

Briefcase adds the following finish arguments by default:

• share=ipc

• socket=x11

• nosocket=wayland

• share=network

• device=dri

• socket=pulseaudio

106 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

• filesystem=xdg-cache

• filesystem=xdg-config

• filesystem=xdg-data

• filesystem=xdg-documents

• socket=session-bus

These can be disabled by explicitly setting their value to False; for example, to disable audio access, you would specify:

finish_arg."socket=pulseaudio" = false

flatpak_runtime_repo_alias

An alias to use when registering the Flatpak repository that will store the Flatpak runtime used to build the app. By
default, Briefcase will use Flathub as its runtime repository, with an alias of flathub.

flatpak_runtime_repo_url

The repository URL hosting the runtime and SDK package that the Flatpak will use. By default, Briefcase will use
Flathub as its runtime repository.

flatpak_runtime

A string, identifying the runtime to use as a base for the Flatpak app.

The Flatpak runtime and SDK are paired; so, both a flatpak_runtime and a corresponding flatpak_sdk must be
defined.

flatpak_runtime_version

A string, identifying the version of the Flatpak runtime that should be used.

flatpak_sdk

A string, identifying the SDK associated with the platform that will be used to build the Flatpak app.

The Flatpak runtime and SDK are paired; so, both a flatpak_runtime and a corresponding flatpak_sdk must be
defined.

modules_extra_content

Additional build instructions that will be inserted into the Flatpak manifest, after Python has been installed and pip is
guaranteed to exist, but before any app code or app packages have been installed into the Flatpak.

2.4. Reference 107

https://flathub.org
https://flathub.org
https://docs.flatpak.org/en/latest/available-runtimes.html

Briefcase Documentation, Release 0.3.18

Permissions

Permissions are not used for Flatpak packaging.

Compilation issues with Flatpak

Flatpak works by building a sandbox in which to compile the application bundle. This sandbox uses some low-level
kernel and file system operations to provide the sandboxing behavior. As a result, Flatpaks cannot be built inside a
Docker container, and they cannot be build on an NFS mounted drive.

If you get errors about renameat when building an app, similar to the following:

[helloworld] Building Flatpak...
Downloading sources
Initializing build dir
Committing stage init to cache
Error: Writing metadata object: renameat: Operation not permitted
Building...

Error while building app helloworld.

Log saved to ...

you may be building on an NFS drive. Move your project to local storage, and retry the build.

iOS

Briefcase supports packaging iOS apps using an Xcode project.

iOS Xcode project

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

When generating an iOS project, Briefcase produces an Xcode project.

Icon format

iOS projects use .png format icons. An application must provide icons of the following sizes:

• 20px

• 29px

• 40px

• 58px

• 60px

108 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

• 76px

• 80px

• 87px

• 120px

• 152px

• 167px

• 180px

• 640px

• 1024px

• 1280px

• 1920px

The icon will also be used to populate the splash screen. You can specify a background color for the splash screen
using the splash_background_color configuration setting.

iOS projects do not support installer images.

Colors

iOS allows for some customization of the colors used by your app:

• splash_background_color is the color of the splash background that displays while an app is loading.

Additional options

The following options can be provided at the command line when producing iOS projects:

run

-d <device> / --device <device>

The device simulator to target. Can be either a UDID, a device name (e.g., "iPhone 11"), or a device name and OS
version ("iPhone 11::iOS 13.3").

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.iOS.app section of your pyproject.
toml file.

2.4. Reference 109

Briefcase Documentation, Release 0.3.18

info

A property whose sub-attributes define keys that will be added to the app’s Info.plist file. Each entry will be
converted into a key in the entitlements file. For example, specifying:

info."UIFileSharingEnabled" = true

will result in an Info.plist declaration of:

<key>UIFileSharingEnabled</key><true/>

Any Boolean or string value can be used for an Info.plist value.

Permissions

Briefcase cross platform permissions map to the following info keys:

• camera: NSCameraUsageDescription

• microphone: NSMicrophoneUsageDescription

• coarse_location - NSLocationDefaultAccuracyReduced=True - NSLocationWhenInUseUsageDescription
if fine_location is not defined

• fine_location - NSLocationDefaultAccuracyReduced=False - NSLocationWhenInUseUsageDescription

• background_location: - NSLocationAlwaysAndWhenInUseUsageDescription -
NSLocationWhenInUseUsageDescription if neither fine_location or coarse_location is set -
UIBackgroundModes will include location and processing

• photo_library: NSPhotoLibraryAddUsageDescription

Platform quirks

Availability of third-party packages

Briefcase is able to use third-party packages in iOS apps. As long as the package is available on PyPI, or you can
provide a wheel file for the package, it can be added to the requires declaration in your pyproject.toml file and
used by your app at runtime.

If the package is pure Python (i.e., it does not contain a binary library), that’s all you need to do. To check whether a pack-
age is pure Python, look at the PyPI downloads page for the project; if the wheels provided are have a -py3-none-any.
whl suffix, then they are pure Python wheels. If the wheels have version and platform-specific extensions (e.g.,
-cp311-cp311-macosx_11_0_universal2.whl), then the wheel contains a binary component.

If the package contains a binary component, that wheel needs to be compiled for iOS. PyPI does not currently support
uploading iOS-compatible wheels, so you can’t rely on PyPI to provide those wheels. Briefcase uses a secondary
repository to store pre-compiled iOS wheels.

This repository is maintained by the BeeWare project, and as a result, it does not have binary wheels for every package
that is available on PyPI, or even every version of every package that is on PyPI. If you see any of the following messages
when building an app for a mobile platform, then the package (or this version of it) probably isn’t supported yet:

• The error “Cannot compile native modules”

• A reference to downloading a .tar.gz version of the package

• A reference to Building wheels for collected packages: <package>

110 Chapter 2. Community

https://anaconda.org/beeware/repo
https://anaconda.org/beeware/repo

Briefcase Documentation, Release 0.3.18

It is usually possible to compile any binary package wheels for iOS, depending on the requirements of the package
itself. If the package has a dependency on other binary libraries (e.g., something like libjpeg that isn’t written in
Python), those libraries will need to be compiled for iOS as well. However, if the library requires build tools that don’t
support iOS, such as a compiler that can’t target iOS, or a PEP517 build system that doesn’t support cross-compilation,
it may not be possible to build an iOS wheel.

The BeeWare Project provides the Mobile Forge project to assist with cross-compiling iOS binary wheels. This repos-
itory contains recipes for building the packages that are stored in the secondary package repository. Contributions of
new package recipes are welcome, and can be submitted as pull requests. Or, if you have a particular package that you’d
like us to support, please visit the issue tracker and provide details about that package.

Android

Briefcase supports packaging Android apps using a Gradle project.

Gradle project

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

When generating an Android project, Briefcase produces a Gradle project.

Environment

Gradle requires an install of a Java 17 JDK and the Android SDK.

If the methods below fail to find an Android SDK or Java JDK, Briefcase will download and install an isolated copy in
its data directory.

Java JDK

If you have an existing install of a Java 17 JDK, it will be used by Briefcase if the JAVA_HOME environment variable
is set. On macOS, if JAVA_HOME is not set, Briefcase will use the /usr/libexec/java_home tool to find an existing
JDK install.

Android SDK

If you have an existing install of the Android SDK, it will be used by Briefcase if the ANDROID_HOME environ-
ment variable is set. If ANDROID_HOME is not present in the environment, Briefcase will honor the deprecated
ANDROID_SDK_ROOT environment variable. Additionally, an existing SDK install must have version 9.0 of Command-
line Tools installed; this version can be installed in the SDK Manager in Android Studio.

2.4. Reference 111

https://github.com/beeware/mobile-forge
https://anaconda.org/beeware/repo
https://github.com/beeware/mobile-forge/issues

Briefcase Documentation, Release 0.3.18

Packaging format

Briefcase supports three packaging formats for an Android app:

1. An AAB bundle (the default output of briefcase package android, or by using briefcase package
android -p aab); or

2. A Release APK (by using briefcase package android -p apk); or

3. A Debug APK (by using briefcase package android -p debug-apk).

Icon format

Android projects use .png format icons, in round, square and adaptive variants. An application must provide the icons
in the following sizes, for 3 variants:

• round:

– 48px (mdpi; baseline resolution)

– 72px (hdpi; 1.5x scale)

– 96px (xhdpi; 2x scale)

– 144px (xxhdpi; 3x scale)

– 192px (xxxhdpi; 4x scale)

• square:

– 48px (mdpi; baseline resolution)

– 72px (hdpi; 1.5x scale)

– 96px (xhdpi; 2x scale)

– 144px (xxhdpi; 3x scale)

– 192px (xxxhdpi; 4x scale)

– 320px (mdpi; baseline resolution for splash screen)

– 480px (hdpi; 1.5x scale for splash screen)

– 640px (xhdpi; 2x scale for splash screen)

– 960px (xxhdpi; 3x scale for splash screen)

– 1280px (xxxhdpi; 4x scale for splash screen)

• adaptive:

– 108px (mdpi; baseline resolution; 66px drawable area)

– 162px (hdpi; 1.5x scale; 99px drawable area)

– 216px (xhdpi; 2x scale; 132px drawable area)

– 324px (xxhdpi; 3x scale; 198px drawable area)

– 432px (xxxhdpi; 4x scale; 264px drawable area)

The round and square icons should include their background color in the image. The adaptive icons should have
a transparent background; the icon image should be centered in the overall image, and should not exceed the drawable
area. The background color of the adaptive icon will be the value specified with splash_background_color.

112 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

The icon will also be used to populate the splash screen. You can specify a background color for the splash screen
using the splash_background_color configuration setting.

Android projects do not support installer images.

Colors

Android allows for some customization of the colors used by your app:

• base_theme is used to set the base Android theme.

• accent_color is used as a subtle highlight throughout your app to call attention to key elements. It’s used on
things like form labels and inputs.

• primary_color is the main branding color of the app and is used to color the app bar in the main window.

• primary_color_dark is used alongside the primary color to color the status bar at the top of the screen.

• splash_background_color is the color of the splash background that displays while an app is loading.

Additional options

The following options can be provided at the command line when producing Android projects:

run

-d <device> / --device <device>

The device or emulator to target. Can be specified as:

• @ followed by an AVD name (e.g., @beePhone); or

• a device ID (a hexadecimal identifier associated with a specific hardware device); or

• a JSON dictionary specifying the properties of a device that will be created. This dictionary must have, at a
minimum, an AVD name:

$ briefcase run -d '{"avd":"new-device"}'

You may also specify:

- ``device_type`` (e.g., ``pixel``) - the type of device to emulate
- ``skin`` (e.g., ``pixel_3a``) - the skin to apply to the emulator
- ``system_image`` (e.g., ``system-images;android-31;default;arm64-v8a``) - the Android
system image to use in the emulator.

If any of these attributes are *not* specified, they will fall back
to reasonable defaults.

2.4. Reference 113

Briefcase Documentation, Release 0.3.18

--Xemulator=<value>

A configuration argument to be passed to the emulator on startup. For example, to start the emulator in “headless” mode
(i.e., without a display window), specify --Xemulator=-no-window. See the Android documentation for details on
the full list of options that can be provided.

You may specify multiple --Xemulator arguments; each one specifies a single argument to pass to the emulator, in
the order they are specified.

--shutdown-on-exit

Instruct Briefcase to shut down the emulator when the run finishes. This is especially useful if you are running in
headless mode, as the emulator will continue to run in the background, but there will be no visual manifestation that it
is running. It may also be useful as a cleanup mechanism when running in a CI configuration.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.android section of your pyproject.
toml file.

android_manifest_attrs_extra_content

Additional attributes that will be added verbatim to the <manifest> declaration of the AndroidManifest.xml of
your app.

android_manifest_extra_content

Additional content that will be added verbatim just before the closing </manifest> declaration of the
AndroidManifest.xml of your app.

android_manifest_application_attrs_extra_content

Additional attributes that will be added verbatim to the <application> declaration of the AndroidManifest.xml
of your app.

android_manifest_application_extra_content

Additional content that will be added verbatim just before the closing </application> declaration of the
AndroidManifest.xml of your app.

114 Chapter 2. Community

https://developer.android.com/studio/run/emulator-commandline

Briefcase Documentation, Release 0.3.18

android_manifest_activity_attrs_extra_content

Additional attributes that will be added verbatim to the <activity> declaration of the AndroidManifest.xml of
your app.

android_manifest_activity_extra_content

Additional content that will be added verbatim just before the closing </activity> declaration of the
AndroidManifest.xml of your app.

base_theme

The base theme for the application. Defaults to Theme.AppCompat.Light.DarkActionBar

build_gradle_dependencies

The list of libraries that should be linked into the Android application. Each library should be a versioned Maven
package specifier. If unspecified, three libraries will be linked into the app:

• androidx.appcompat:appcompat:1.0.2

• androidx.constraintlayout:constraintlayout:1.1.3

• androidx.swiperefreshlayout:swiperefreshlayout:1.1.0

build_gradle_extra_content

A string providing additional Gradle settings to use when building your app. This will be added verbatim to the end of
your app/build.gradle file.

feature

A property whose sub-properties define the features that will be marked as required by the final app. Each entry will be
converted into a <uses-feature> declaration in your app’s AndroidManifest.xml, with the feature name matching
the name of the sub-attribute.

For example, specifying:

feature."android.hardware.bluetooth" = true

will result in an AndroidManifest.xml declaration of:

<uses-feature android:name="android.hardware.bluetooth" android:required="true">

The use of some cross-platform permissions will imply the addition of features; see the discussion on Android permis-
sions for more details.

2.4. Reference 115

Briefcase Documentation, Release 0.3.18

permission

A property whose sub-properties define the platform-specific permissions that will be marked as required by the final
app. Each entry will be converted into a <uses-permission> declaration in your app’s AndroidManifest.xml,
with the feature name matching the name of the sub-attribute.

For example, specifying:

permission."android.permission.HIGH_SAMPLING_RATE_SENSORS" = true

will result in an AndroidManifest.xml declaration of:

<uses-permission android:name="android.permission.HIGH_SAMPLING_RATE_SENSORS">

version_code

In addition to a version number, Android projects require a version “code”. This code is an integer version of your
version number that must increase with every new release pushed to the Play Store.

Briefcase will attempt to generate a version code by combining the version number with the build number. It does this
by using each part of the main version number (padded to 3 digits if necessary) and the build number as 2 significant
digits of the final version code:

• Version 1.0, build 1 becomes 1000001 (i.e, 1, 00, 00, 01)

• Version 1.2, build 37 becomes 1020037 (i.e., 1, 02, 00, 37)

• Version 1.2.37, build 42 becomes 1023742 (i.e, 1, 02, 37, 42)

• Version 2020.6, build 4 becomes 2020060004 (i.e., 2020, 06, 00, 04)

If you want to manually specify a version code by defining version_code in your application configuration. If pro-
vided, this value will override any auto-generated value.

Permissions

Briefcase cross platform permissions map to <uses-permission> declarations in the app’s AppManifest.xml:

• camera: android.permission.CAMERA

• microphone: android.permission.RECORD_AUDIO

• coarse_location: android.permission.ACCESS_COARSE_LOCATION

• fine_location: android.permission.ACCESS_FINE_LOCATION

• background_location: android.permission.ACCESS_BACKGROUND_LOCATION

• photo_library: android.permission.READ_MEDIA_VISUAL_USER_SELECTED

Every application will be automatically granted the android.permission.INTERNET and android.permission.
NETWORK_STATE permissions.

Specifying a camera permission will result in the following non-required feature definitions being implicitly added
to your app:

• android.hardware.camera,

• android.hardware.camera.any,

• android.hardware.camera.front,

116 Chapter 2. Community

Briefcase Documentation, Release 0.3.18

• android.hardware.camera.external and

• android.hardware.camera.autofocus.

Specifying the coarse_location, fine_location or background_location permissions will result in the follow-
ing non-required feature declarations being implicitly added to your app:

• android.hardware.location.network

• android.hardware.location.gps

This is done to ensure that an app is not prevented from installing if the device doesn’t have the given features. You
can make the feature explicitly required by manually defining these feature requirements. For example, to make GPS
hardware required, you could add the following to the Android section of your pyproject.toml:

feature."android.hardware.location.gps" = True

Platform quirks

Availability of third-party packages

Briefcase is able to use third-party packages in Android apps. As long as the package is available on PyPI, or you can
provide a wheel file for the package, it can be added to the requires declaration in your pyproject.toml file and
used by your app at runtime.

If the package is pure Python (i.e., it does not contain a binary library), that’s all you need to do. To check whether a pack-
age is pure Python, look at the PyPI downloads page for the project; if the wheels provided are have a -py3-none-any.
whl suffix, then they are pure Python wheels. If the wheels have version and platform-specific extensions (e.g.,
-cp311-cp311-macosx_11_0_universal2.whl), then the wheel contains a binary component.

If the package contains a binary component, that wheel needs to be compiled for Android. PyPI does not currently
support uploading Android-compatible wheels, so you can’t rely on PyPI to provide those wheels. Briefcase uses a
secondary repository to provide pre-compiled Android wheels.

This repository is maintained by the BeeWare project, and as a result, it does not have binary wheels for every package
that is available on PyPI, or even every version of every package that is on PyPI. If you see any of the following messages
when building an app for a mobile platform, then the package (or this version of it) probably isn’t supported yet:

• The error “Chaquopy cannot compile native code”

• A reference to downloading a .tar.gz version of the package

• A reference to Building wheels for collected packages: <package>

It is usually possible to compile any binary package wheels for Android, depending on the requirements of the package
itself. If the package has a dependency on other binary libraries (e.g., something like libjpeg that isn’t written in
Python), those libraries will need to be compiled for Android as well. However, if the library requires build tools that
don’t support Android, such as a compiler that can’t target Android, or a PEP517 build system that doesn’t support
cross-compilation, it may not be possible to build an Android wheel.

The Chaquopy repository contains tools to assist with cross-compiling Android binary wheels. This repository contains
recipes for building the packages that are stored in the secondary package repository. Contributions of new package
recipes are welcome, and can be submitted as pull requests. Or, if you have a particular package that you’d like us to
support, please visit the issue tracker and provide details about that package.

2.4. Reference 117

https://chaquo.com/pypi-13.1/
https://chaquo.com/chaquopy/doc/current/faq.html#chaquopy-cannot-compile-native-code
https://github.com/chaquo/chaquopy/blob/master/server/pypi/README.md
https://chaquo.com/pypi-13.1/
https://github.com/chaquo/chaquopy/issues

Briefcase Documentation, Release 0.3.18

Web

Briefcase supports packaging web apps as static web deployments.

Static Web

Host Platform Support (Platform support)
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

When generating a web project, Briefcase produces a static folder of HTML, CSS and JavaScript resources that can be
deployed as a web site. The static web site is packaged as a .zip file for distribution.

Although Briefcase provides a run command that can be used to serve the website, this web server is provided as a
development convenience. It should not be used in production. If you wish to serve your app in production, you can
unzip the .zip file in the root of any web server that can serve static web content.

Web support is experimental!

PyScript (which forms the base of Briefcase’s web backend) is a new project; and Toga’s web backend is very new. As
a result this web backend should be considered experimental.

Regardless of what Python version you run Briefcase with, the app will use PyScript’s current Python version (as of
October 2022, this is 3.10).

There are also a number of constraints on what you can do in a web environment. Some of these are fundamental
constraints on the web as a platform; some are known issues with PyScript and Pyodide as runtime environments. You
shouldn’t expect that arbitrary third-party Python packages will “just run” in a web environment.

Icon format

Web projects use a single 32px .png format icon as the site icon.

Web projects do not support splash screens or installer images.

Additional options

The following options can be provided at the command line when producing web projects:

118 Chapter 2. Community

https://pyscript.net
https://pyodide.org/en/stable/usage/wasm-constraints.html

Briefcase Documentation, Release 0.3.18

run

--host <ip or hostname>

The hostname or IP address that the development web server should be bound to. Defaults to localhost.

-p <port> / --port <port>

The port that the development web server should be bound to. Defaults to 8080. If port 8080 is already in use, an
arbitrary available port will be used.

--no-browser

Don’t open a web browser after starting the development web server.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.web section of your pyproject.toml
file:

extra_pyscript_toml_content

Any additional configuration that you wish to add to the pyscript.toml file for your deployed site. For example, you
can use this to change the runtime used by Briefcase when deploying your site.

extra_pyscript_toml_content is a string that defines valid TOML content; this content will be parsed, and used
to add values to the pyscript.toml generated by Briefcase, overriding any pre-existing keys. For example, to define
a custom runtime, and change the default PyScript app name, you could use:

extra_pyscript_toml_content = """
name = "My name override"

[[runtimes]]
src = "https://example.com/custom/pyodide.js"
"""

Supported and tested in CI
Supported and tested by maintainers
Supported but not tested regularly

2.4. Reference 119

Briefcase Documentation, Release 0.3.18

Target App Format Host System
macOS Windows Linux
x86-64 arm64 x86 x86-64 arm64 x86 x86-64 arm arm64

Android Gradle project
iOS Xcode project
Linux AppImage

Flatpak
System package

macOS .app bundle
Xcode project

Web Static
Win-
dows

Windows app
Visual Stu-
dio project

120 Chapter 2. Community

./android/gradle.html
./iOS/xcode.html
./linux/appimage.html
./linux/flatpak.html
./linux/system.html
./macOS/app.html
./macOS/xcode.html
./web/static.html
./windows/app.html
./windows/visualstudio.html
./windows/visualstudio.html

	Table of contents
	Tutorial
	How-to guides
	Background
	Reference

	Community
	Tutorial
	How-to guides
	Obtaining a Code Signing identity
	Android
	Overview
	Generate a key

	macOS
	Overview
	Enrolling in the Apple Developer program
	Generating a certificate request on Keychain Access
	Creating a Developer ID Application Certificate
	Next steps

	Windows
	Overview
	Obtain a Certificate
	Install the Certificate
	Certificate’s SHA-1 Thumbprint

	Upgrading from Briefcase v0.2
	Configuration
	Invocation

	Accessing Briefcase packaging metadata at runtime
	Contributing code to Briefcase
	tl;dr
	Setting up your development environment
	Clone Briefcase and create virtual environment
	Install pre-commit
	Pre-commit automatically runs during the commit

	Create a new branch in git
	Running tests and coverage
	Run tests for multiple versions of Python
	Run only the test suite
	Run a subset of tests
	Run the test suite for a specific Python version
	Run the test suite without coverage (fast)

	Code coverage
	Coverage report for host platform and Python version
	Coverage report for host platform
	Coverage reporting in HTML

	Add change information for release notes
	Simulating GitHub CI checks locally

	Contributing to the documentation
	Create a .rst file
	Build documentation locally
	Live documentation preview
	Documentation linting
	Rebuilding all documentation

	Internal How-to guides
	How to cut a Briefcase release
	Docker X11 Passthrough
	X Window System Background
	X Configuration
	X Operation

	Docker
	Docker Desktop
	Docker Networking

	Exposing an X Display to a Container
	TCP Proxy
	X Authentication for the Proxied X Display

	X11 Forwarding over SSH

	Publishing your app
	Android
	Build the app in release mode
	Sign the Android App Bundle
	Add the app to the Google Play store
	Register for a Google Play Developer account
	Create a listing
	Create a release

	Publish an update

	iOS
	Open the app in Xcode
	Run the app in the simulator
	Produce an App archive
	Create an App Store entry

	About Briefcase
	Frequently Asked Questions
	What version of Python does Briefcase support?
	What platforms does Briefcase support?
	How do I detect if my app is running in a Briefcase-packaged container?
	Can I use third-party Python packages in my app?

	The Briefcase Developer and User community
	Code of Conduct
	Contributing

	Success Stories
	Release History
	0.3.18 (2024-05-06)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.3.17 (2024-02-06)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.3.16 (2023-10-20)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.3.15 (2023-07-10)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.3.14 (2023-04-12)
	Features
	Bugfixes
	Misc

	0.3.13 (2023-03-10)
	Features
	Bugfixes
	Misc

	0.3.12 (2023-01-30)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.11 (2022-10-14)
	Features
	Bugfixes
	Misc

	0.3.10 (2022-09-28)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.9 (2022-08-17)
	Features
	Bugfixes
	Misc

	0.3.8 (2022-06-27)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.7 (2022-05-17)
	Features
	Bugfixes
	Misc

	0.3.6 (2022-02-28)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.5 (2021-03-06)
	Features
	Bugfixes
	Misc

	0.3.4 (2021-01-03)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.3 (2020-07-18)
	Features
	Bugfixes

	0.3.2 (2020-07-04)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.1 (2020-06-13)
	Features
	Bugfixes
	Improved Documentation
	Misc

	0.3.0 (2020-04-18)
	Features

	0.2.10
	0.2.9
	0.2.8
	0.2.7
	0.2.6
	0.2.5
	0.2.4
	0.2.3
	0.2.2
	0.2.1
	0.2.0
	0.1.9
	0.1.8
	0.1.7
	0.1.6
	0.1.5
	0.1.4
	0.1.3
	0.1.2
	0.1.1
	0.1.0

	Reference
	Briefcase configuration options
	Environment variables
	BRIEFCASE_HOME

	Project configuration options
	Configuration sections
	[tool.briefcase]
	[tool.briefcase.app.<app name>]
	[tool.briefcase.app.<app name>.<platform>]
	[tool.briefcase.app.<app name>.<platform>.<output format>]

	Project configuration
	Required values
	bundle
	project_name
	version

	Optional values
	author
	author_email
	url

	Application configuration
	Required
	description
	sources

	Optional values
	accent_color
	author
	author_email
	build
	cleanup_paths
	exit_regex
	formal_name
	icon
	installer_icon
	installer_background
	long_description
	primary_color
	primary_color_dark
	requires
	revision
	splash_background_color
	support_package
	support_revision
	supported
	template
	template_branch
	test_requires
	test_sources
	url

	Permissions
	Document types
	description
	icon
	url

	PEP621 compatibility

	Command reference
	new
	Usage
	Options
	-t <template> / --template <template>
	--template-branch <branch>
	-Q <KEY=VALUE>

	convert
	Usage
	Options
	-t <template> / --template <template>
	--template-branch <branch>
	-Q <KEY=VALUE>

	dev
	Usage
	Options
	-a <app name> / --app <app name
	-r / --update-requirements
	--no-run
	--test
	Passthrough arguments

	create
	Usage
	Options

	update
	Usage
	Options
	-r / --update-requirements
	--update-resources
	--update-support

	build
	Usage
	Options
	-u / --update
	-r / --update-requirements
	--update-resources
	--update-support
	--test
	--no-update

	run
	Test mode
	Usage
	Options

	-a <app name> / --app <app name
	-u / --update
	-r / --update-requirements
	--update-resources
	--update-support
	--test
	--no-update
	Passthrough arguments

	package
	Usage
	Options
	-u / --update
	-p <format>, --packaging-format <format>
	--adhoc-sign
	-i <identity> / --identity <identity>

	publish
	Usage
	Options
	-c <channel> / --channel <channel>

	upgrade
	Usage
	Options
	-l / --list

	Common options
	-C <KEY=VALUE> / --config <KEY=VALUE>
	-h / --help
	--log
	--no-input
	-v / --verbosity
	-V / --version

	Platform support
	macOS
	.app bundle
	Packaging format
	Icon format
	Additional options
	--no-notarize
	Application configuration
	entitlement
	info
	universal_build
	Permissions
	Platform quirks
	Packaging with --adhoc-sign

	macOS Xcode project
	Packaging format
	Icon format
	Additional options
	--no-notarize
	Application configuration
	entitlement
	info
	universal_build
	Permissions
	Platform quirks
	Packaging with --adhoc-sign

	Windows
	Windows App
	Packaging format
	Icon format
	Additional options
	--file-digest <digest>
	--use-local-machine-stores
	--cert-store <store>
	--timestamp-url <url>
	--timestamp-digest <url>
	Application configuration
	system_installer
	use_full_install_path
	version_triple
	Platform quirks
	Use caution with --update-support
	Packaging with --adhoc-sign

	Visual Studio project
	Packaging format
	Icon format
	Additional options
	--file-digest <digest>
	--use-local-machine-stores
	--cert-store <store>
	--timestamp-url <url>
	--timestamp-digest <url>
	Application configuration
	system_installer
	use_full_install_path
	version_triple
	Platform quirks
	Use caution with --update-support
	Packaging with --adhoc-sign

	Linux
	Native System Packages
	Icon format
	Additional files
	Additional options
	--target
	--Xdocker-build=<value>
	Application configuration
	system_requires
	system_runtime_requires
	system_section
	dockerfile_extra_content

	AppImage
	Icon format
	Additional options
	--no-docker
	--Xdocker-build=<value>
	Application configuration
	manylinux
	manylinux_image_tag
	system_requires
	linuxdeploy_plugins
	dockerfile_extra_content
	Platform quirks
	Use caution with --update-support
	Apps using WebKit2 are not supported
	Runtime issues with AppImages
	Failure to load libpango-1.0-so.0
	Undefined symbol and Namespace not available errors
	ELF load command address/offset not properly aligned

	Flatpak
	Icon format
	Application configuration
	finish_arg
	flatpak_runtime_repo_alias
	flatpak_runtime_repo_url
	flatpak_runtime
	flatpak_runtime_version
	flatpak_sdk
	modules_extra_content
	Permissions
	Compilation issues with Flatpak

	iOS
	iOS Xcode project
	Icon format
	Colors
	Additional options
	run
	-d <device> / --device <device>
	Application configuration
	info
	Permissions
	Platform quirks
	Availability of third-party packages

	Android
	Gradle project
	Environment
	Java JDK
	Android SDK
	Packaging format
	Icon format
	Colors
	Additional options
	run
	-d <device> / --device <device>
	--Xemulator=<value>
	--shutdown-on-exit
	Application configuration
	android_manifest_attrs_extra_content
	android_manifest_extra_content
	android_manifest_application_attrs_extra_content
	android_manifest_application_extra_content
	android_manifest_activity_attrs_extra_content
	android_manifest_activity_extra_content
	base_theme
	build_gradle_dependencies
	build_gradle_extra_content
	feature
	permission
	version_code
	Permissions
	Platform quirks
	Availability of third-party packages

	Web
	Static Web
	Icon format
	Additional options
	run
	--host <ip or hostname>
	-p <port> / --port <port>
	--no-browser
	Application configuration
	extra_pyscript_toml_content

