
Briefcase Documentation
Release 0.3.6

Russell Keith-Magee

Aug 18, 2022

CONTENTS

1 Table of contents 3
1.1 Tutorial . 3
1.2 How-to guides . 3
1.3 Background . 3
1.4 Reference . 3

2 Community 5
2.1 Tutorial . 5
2.2 How-to guides . 5
2.3 About Briefcase . 24
2.4 Reference . 32

i

ii

Briefcase Documentation, Release 0.3.6

Briefcase is a tool for converting a Python project into a standalone native application. It supports producing binaries
for:

• macOS, as a standalone .app;

• Windows, as an MSI installer;

• Linux, as an AppImage;

• iOS, as an XCode project; and

• Android, as a Gradle project.

It is also extensible, allowing for additional platforms and installation formats to be produced.

CONTENTS 1

Briefcase Documentation, Release 0.3.6

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Tutorial

Get started with a hands-on introduction for beginners

1.2 How-to guides

Guides and recipes for common problems and tasks, including how to contribute

1.3 Background

Explanation and discussion of key topics and concepts

1.4 Reference

Technical reference - commands, modules, classes, methods

3

Briefcase Documentation, Release 0.3.6

4 Chapter 1. Table of contents

CHAPTER

TWO

COMMUNITY

Briefcase is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• Discord

• The Briefcase Github Discussions forum

2.1 Tutorial

Briefcase is a packaging tool - but first you need something to package. The best way to learn about Briefcase is to
see it working with the rest of the BeeWare suite of tools.

The BeeWare tutorial walks you through the process of building a native Python application from scratch.

Once you’ve done that tutorial, the Briefcase How-To Guides provide details on performing specific tasks with Brief-
case.

2.2 How-to guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and
assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

2.2.1 Obtaining a Code Signing identity

If you are intending to distribute an application, it is advisable (and, on some platforms, necessary) to code sign
your application. This is a cryptographic process that identifies you as a developer, and identifies your application as
something that has been distributed by you.

The process of obtaining a code signing identity is slightly different on every platform. The following are guides for
every platform that Briefcase supports:

5

http://beeware.org
https://twitter.com/pybeeware
https://beeware.org/bee/chat/
https://github.com/beeware/briefcase/discussions
https://beeware.readthedocs.io/en/latest/

Briefcase Documentation, Release 0.3.6

Android

Overview

Android requires that all apps be digitally signed with a certificate before they are installed on a device or updated.
Android phones enforce a policy that updates to an app must come from the same signing key to validate. This allows
the phone to be sure an update is fundamentally the same app, i.e., has the same author.

This documentation covers one way to sign your app where the Google Play Store maintains the authoritative key for
your app. This approach is called App Signing by Google Play.

You will need to generate a key on your development workstation to sign an app package before sending it to the
Google Play store. If you use app signing by Google Play, the key on your workstation is called the upload key.

Generate a key

You will need to decide where to store the upload key. A good default is to use one keystore file per app you are
creating and to store it in the .android folder within your home folder. The folder is automatically created by the
Android tools; but if it doesn’t exist, create it.

We recommend using a separate keystore file per app. Below, we use the upload-key-helloworld.jks filename. This
assumes you are building an app called “Hello World”; use the (lowercase, no spaces) app name, helloworld in
the filename for the keystore.

Try not to lose this key; make backups if needed. If you do lose this key, you can contact Google Play support to reset
it. If you choose not to use app signing by Google Play, it is absolutely essential that you not lose this key. For this
reason, we recommend using App Signing by Google Play.

macOS

Linux

Windows

$ mkdir -p ~/.android
$ ~/.briefcase/tools/java/Contents/Home/bin/keytool -keyalg RSA -deststoretype pkcs12
→˓-genkey -v -storepass android -keystore ~/.android/upload-key-helloworld.jks -
→˓keysize 2048 -dname "cn=Upload Key" -alias upload-key -validity 10000

$ mkdir -p ~/.android
$ ~/.briefcase/tools/java/bin/keytool -keyalg RSA -deststoretype pkcs12 -genkey -v -
→˓storepass android -keystore ~/.android/upload-key-helloworld.jks -keysize 2048 -
→˓dname "cn=Upload Key" -alias upload-key -validity 10000

C:\...>IF not exist %HOMEPATH%\.android mkdir %HOMEPATH%\.android
C:\...>%HOMEPATH%\.briefcase\tools\java\bin\keytool.exe -keyalg RSA -deststoretype
→˓pkcs12 -genkey -v -storepass android -keystore %HOMEPATH%\.android\upload-key-
→˓helloworld.jks -keysize 2048 -dname "cn=Upload Key" -alias upload-key -validity
→˓10000

This creates a 2048-bit key and stores it in a Java keystore located in the .android folder within your home folder.
Since the key’s purpose is to be used as an upload key for the Google Play store, we call the key “upload-key”.

We use a password of android. This is the default password for common Android keystores. You can change the
password if you like. It is more important to limit who has access to the keystore file than to change the password.

See Publishing your app for instructions on using this key to upload an app to the Google Play store.

6 Chapter 2. Community

https://developer.android.com/studio/publish/app-signing
https://support.google.com/googleplay/android-developer/answer/7384423
https://support.google.com/googleplay/android-developer/answer/7384423#reset
https://support.google.com/googleplay/android-developer/answer/7384423#reset
https://developers.google.com/android/guides/client-auth

Briefcase Documentation, Release 0.3.6

macOS

Overview

In this tutorial, we’ll learn how to generate a macOS code signing identity, which is required to distribute your appli-
cation across MacOS and iOS devices.

We will specifically focus on generating a Developer ID Application identity, which is used to distribute a Mac
application outside of the Mac App store. However, the procedure for creating all other types of identities is exactly
the same. Once you familiarize yourself with the general process, you’ll be able to create identities required to upload
applications to the Mac or iOS App stores without much trouble.

Getting the code signing identity will require five main steps, which you will be guided through in this tutorial:

1. Enrolling in the Apple Developer program

2. Generating a Certificate Signing Request on Keychain Access

3. Creating a Developer ID Application Certificate

4. Accessing the details of the Certificate on your Terminal

5. Anticipating potential issues with the identity in the future

Enrolling in the Apple Developer program

You can enrol in the Apple Developer program either as an individual, or as an organization. In both cases, you’ll have
to follow the instructions on the Apple Developer website.

Once you click “Start Enrollment Now” at the bottom of the page, you can either sign in with your existing Apple ID
or alternatively, create a new one:

As part of the registration procedure, you’ll have to pay a $99 fee, which will be charged on an annual basis.

Fee waivers

If you’re registering as a non-profit organization, an educational institution or a government entity, you may be eligible
for a fee waiver, which you can read more about here.

2.2. How-to guides 7

https://developer.apple.com/developer-id/
https://developer.apple.com/programs/enroll/
https://developer.apple.com/support/membership-fee-waiver/

Briefcase Documentation, Release 0.3.6

Generating a certificate request on Keychain Access

Now that you’re set up with an Apple Developer ID, it’s time to create a certificate request, which you’ll then use to
generate a valid Developer ID certificate.

First, open the Keychain Access application on your Mac. At the top left of your screen, click Keychain Access
> Certificate Assistant > Request a Certificate From a Certificate Authority:

A Certificate Assistant window should open up, looking similar to this one:

• In the field User Email Address, type the email address associated with your Apple Developer Account
(e.g. jane@example.com).

• Common Name should refer to the name with which you registered to the Apple Developer program (e.g. Jane
Doe).

• The field CA Email Address can be left empty.

• Make sure that you choose Saved to Disk in the Request is field.

• Click “Continue”, and save your Certificate Signing Request somewhere on your local machine. The saved
certificate request should be of the format example.certSigningRequest.

As documented by Apple, this procedure creates not only the file you have just saved, but also a private key in your
Keychain, which will establish the validity of your actual Developer ID Application certificate later on.

8 Chapter 2. Community

https://help.apple.com/xcode/mac/current/#/dev97211aeac

Briefcase Documentation, Release 0.3.6

Creating a Developer ID Application Certificate

Once you have saved the certificate request, head to the Apple Developer website and click “Certificates, Identifiers
and Profiles”:

When you land in the Certificates section, click the “+” symbol to create a new certificate:

In the next page, you’ll have to choose the type of certificate you want to generate. In the Software section, choose the
option of “Developer ID Application”. It’s very important you choose the right type of certificate.

Later on, if you want to generate another code signing certificate for other purposes, such as uploading your application
the App store, you’ll simply have to choose a different type of a certificate on this page.

Note: If you’ve been registered as an organization, there’s a chance that the option to choose the Developer ID
Application certificate is unavailable. This may happen if you’re not assigned the role of the Account Holder. You can
access and change these roles using App Store Connect.

Click “Continue”. In the next window, click “Choose file” and upload the Certificate Signing Request you have just
generated on your Keychain:

2.2. How-to guides 9

https://developer.apple.com/account
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution
https://appstoreconnect.apple.com/access/users

Briefcase Documentation, Release 0.3.6

Once you click “Continue”, Apple will generate your Developer ID Application Certificate. Click the “Download”
button and save the certificate on your local machine:

The certificate should be of the format example.cer. Once you download it, double-click to install it in your
Keychain Access.

Then open your Keychain, make sure you’re in the login directy on the left-hand side, and open the window My
Certificates. You should see a certificate whose title starts with “Developer ID Application. . . ”.

Click on the certificate and make sure you see a note that reads This certificate is valid. Note: In the
example below, the certificate details have been erased:

Congratulations! You’ve just successfully installed the Developer ID Application certificate.

Accessing the details of the Certificate on your Terminal

Finally, open your Terminal. You’ll have to run a command that will fetch detailed information about all valid cer-
tificates for code signing on your local machine, including the Developer ID Application Certificate you have just
created:

macOS

$ security find-identity -p basic -v

The important part of the output is the following:

<Certificate ID> "Developer ID Application: <Name> (<Team ID>)"

e.g:

A1B2C3D4E5F6G7H8I9J10K11L12M13N14O15P16R "Developer ID Application: Jane Doe
→˓(ABCD123456)"

You’ll need to keep note of two things:

• Certificate ID: This should be a 40-unit string, which in the example is:
A1B2C3D4E5F6G7H8I9J10K11L12M13N14O15P16R

10 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

• Team ID: Will usually be a 10-unit string. Here, it’s: ABCD123456.

Anticipating potential issues with the identity in the future

It’s also useful to keep in mind two potential issues related to MacOS code signing identities.

• First, the specific type of the certificate you have just created is quite precious, and you should make
sure to keep it safe. A single Developer ID Application Certificate can be used to sign, notarize and
distribute multiple applications outside of the Mac App store, which is why a very limited number
of them can be created on a particular Developer Account. You should consider making a back up
copy, which will require you to export the certificate together with the associated private key from
the Keychain. The procedure for doing so is documented by Apple.

• If you intend to create other types of code signing identities in the future, it’s also helpful to discuss
Apple’s Worldwide Developer Relations (WWDR) Intermediate Certificate. While we didn’t need
to use it to create the Developer ID Application identity, you’ll need to have a WWDR certificate
in your Keychain to create valid code signing identities for other purposes, such as testing your
applications with the “Mac Development” certificate or uploading them to the App store with the
“Mac App Distribution” certificate.

The WWDR certificate should be automatically installed in your Keychain with Xcode
11.4.1 or later. You should verify this by opening your Keychain, making sure
you’re in the login directory on the left-hand side, and navigating to the window My
Certificates. You should see a certificate called Apple Worldwide Developer
Relations Certification Authority whose expiration date is set to 2030:

If you can’t find this certificate in the Keychain, you can download it by following the instruc-
tions on the Apple Developer website. Alhough Apple’s documentation may change in the
future, the instructions are currently displayed under the Taking Action section. There,
you will find a link to download the certificate directly or through Apple’s Certificate Authority
page. Once you download it, make sure to install it in your Keychain.

2.2. How-to guides 11

https://developer.apple.com/forums/thread/657993
https://developer.apple.com/forums/thread/657993
https://help.apple.com/xcode/mac/current/#/dev3a05256b8
https://help.apple.com/xcode/mac/current/#/dev3a05256b8
https://support.apple.com/guide/keychain-access/import-and-export-keychain-items-kyca35961/mac
https://developer.apple.com/support/expiration/
https://developer.apple.com/support/expiration/
https://www.apple.com/certificateauthority/
https://www.apple.com/certificateauthority/

Briefcase Documentation, Release 0.3.6

Next steps

Now it’s time to start using the Developer ID Application Certificate to sign, notarize, and distribute your application!

2.2.2 Upgrading from Briefcase v0.2

Briefcase v0.2 was built as a setuptools extension. The configuration for your project was contained in a setup.py
or setup.cfg file, and you invoked Briefcase using python setup.py <platform>.

Briefcase v0.3 represents a significant change in the development of Briefcase. Briefcase is now a PEP518-compliant
build tool. It uses pyproject.toml for configuration, and is invoked using a standalone briefcase command.
This change gives significantly improved flexibility in configuring Briefcase apps, and much better control over the
development process.

However, this change is also backwards incompatible. If you have a project that was using Briefcase v0.2, you’ll
need to make some major changes to your configuration and processes as part of upgrading to v0.3.

Configuration

To port your application’s configuration to Briefcase v0.3, you’ll need to add a pyproject.toml file (in, as the
extension suggests, TOML format). This file contains similar content to your setup.py or setup.cfg file.

The following is a minimal starting point for your pyproject.toml file:

[tool.briefcase]
project_name = "My Project"
bundle = "com.example"
version = "0.1"
author = "Jane Developer"
author_email = "jane@example.com"
requires = []

[tool.briefcase.app.myapp]
formal_name = "My App"
description = "My first Briefcase App"
requires = []
sources = ['src/myapp']

[tool.briefcase.app.myapp.macOS]
requires = ['toga-cocoa==0.3.0.dev15']

[tool.briefcase.app.myapp.windows]
requires = ['toga-winforms==0.3.0.dev15']

[tool.briefcase.app.myapp.linux]
requires = ['toga-gtk==0.3.0.dev15']

[tool.briefcase.app.myapp.iOS]
requires = ['toga-iOS==0.3.0.dev15']

The configuration sections are tool specific, and start with the prefix tool.briefcase. Additional dotted paths
define the specificity of the settings that follow.

Most of the keys in your setup.py will map directly to the same key in your pyproject.toml (e.g., version,
description). However, the following pointers may help port other values.

12 Chapter 2. Community

https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/
https://github.com/toml-lang/toml

Briefcase Documentation, Release 0.3.6

• Briefcase v0.2 assumed that a setup.py file described a single app. Briefcase v0.3 allows a project to define
multiple distributable applications. The project_name is the name for the collection of apps described by
this pyproject.toml; formal_name is the name for a single app. If your project defines a single app,
your formal name and project name will probably be the same.

• There is no explicit definition for the app’s name - the app name is derived from the section header name (i.e.,
[tool.briefcase.app.myapp] defines the existence of an app named myapp).

• version must be defined as a string in your pyproject.toml file. If you need to know the version of
your app (or the value of any other app metadata specified in pyproject.toml) at runtime, you should
use importlib.metadata. Briefcase will create myapp.dist-info for your application (using your app name
instead of myapp).

• Briefcase v0.3 configuration files are heirarchical. [tool.briefcase] describes configuration arguments
for the entire project; [tool.briefcase.app.myapp] describes configuration arguments for the appli-
cation named myapp; [tool.briefcase.app.myapp.macOS] describes configuration arguments for
macOS deployments of myapp, and [tool.briefcase.app.myapp.macOS.dmg] describes configura-
tion arguments for DMG deployments of myapp on macOS. The example above doesn’t contain a dmg section;
generally, you won’t need one unless you’re packaging for multiple output formats on a single platform.

For most keys, the “most specific” value wins - so, a value for description defined at the platform level
will override any value at the app level, and so on. The two exceptions are requires and sources, which
are cumulative - the values defined at the platform level will be appended to the values at the app level and the
project level.

• The install_requires and app_requires keys in setup.py are replaced by requires in your
pyproject.toml. requires can be specified at the project level, the app level, the platform level, or the
output format level.

• The packages (and other various source code and data-defining attributes) in setup.py have been replaced
with a single sources key. The paths specified in sources will be copied in their entirety into the packaged
application.

Once you’ve created and tested your pyproject.toml, you can delete your setup.py file. You may also be able
to delete your setup.cfg file, depending on whether it defines any tool configurations (e.g., flake8 or pytest
configurations).

Invocation

In Briefcase v0.2, there was only one entry point: python setup.py <platform>. This would generate a
complete output artefact; and, if you provided the -s argument, would also start the app.

Briecase v0.3 uses it’s own briefcase entry point, with subcommands to perform specific functions:

• briefcase new - Bootstrap a new project (generating a pyproject.toml and other stub content).

• briefcase dev - Run the app in developer mode, using the current virtual environment.

• briefcase create - Use the platform template to generate the files needed to build a distributable artefact
for the platform.

• briefcase update - Update the source code of the application in the generated project.

• briefcase build - Run whatever compilation process is necessary to produce an executable file for the
platform.

• briefcase run - Run the executable file for the platform.

• briefcase package - Perform whatever post-processing is necessary to wrap the executable into a dis-
tributable artefact (e.g., an installer).

2.2. How-to guides 13

https://docs.python.org/3/library/importlib.metadata.html

Briefcase Documentation, Release 0.3.6

When using these commands, there is no need to specify the platform (i.e. macOS when on a Mac). The current
platform will be detected and the appropriate output format will be selected.

If you want to target a different platform, you can specify that platform as an argument. This will be required when
building for mobile platforms (since you’ll never be running Briefcase where the mobile platform is “native”). For
example, if you’re on a Mac, briefcase create macOS and briefcase create would perform the same
task; briefcase create iOS would build an iOS project.

The exceptions to this platform specification are briefcase new and briefcase dev. These two commands
are platform agnostic.

The Briefcase subcommands will also detect if previous steps haven’t been executed, and invoke any prior steps that
are required. For example, if you execute briefcase run on clean project, Briefcase will detect that there are no
platform files, and will automatically run briefcase create and briefcase build. This won’t occur on
subsequent runs.

Briefcase v0.3 also allows for multiple output formats on a single platform. The only platform that currently exposes
capability is macOS, which supports both app and dmg output formats (with dmg being the platform default).

To use a different output format, add the format as an extra argument to each command after the platform. For example,
to create a app file for macOS, you would run:

$ briefcase create macOS app
$ briefcase build macOS app
$ briefcase run macOS app
$ briefcase package macOS app

In the future, we hope to add other output formats for other platforms - Snap and FlatPak on Linux; NSIS installers on
Windows, and possibly others. If you’re interested in adding support for one of these platforms, please get in touch
(or, submit a pull request!)

2.2.3 Accessing Briefcase packaging metadata at runtime

When Briefcase installs your app, it adds a PEP566 metadata file containing information about your app, and
Briefcase itself. You can retrieve this information at runtime using the Python builtin library ‘importlib.metadata’.
importlib.metadata was added in Python 3.8; however, it has been backported and published on PyPI as ‘im-
portlib_metadata’ for older versions of Python.

To access application metadata at runtime, you can use the following code:

import sys
try:

from importlib import metadata as importlib_metadata
except ImportError:

Backwards compatibility - importlib.metadata was added in Python 3.8
import importlib_metadata

Find the name of the module that was used to start the app
app_module = sys.modules['__main__'].__package__
Retrieve the app's metadata
metadata = importlib_metadata.metadata(app_module)

The metadata returned by this code will be a dictionary-like object that contains the following identifying keys:

• Metadata-Version - The syntax version of the metadata file itself (as defined in PEP566).

• Briefcase-Version - The version of Briefcase used to package the app. The existence of this key in app metadata
can be used to identify if your application code is running in a Briecase container; it will only exist if the app
has been packaged by Briefcase.

14 Chapter 2. Community

https://snapcraft.io/
https://flatpak.org/
https://nsis.sourceforge.io/
https://gitter.im/beeware/general
https://www.python.org/dev/peps/pep-0566/
https://docs.python.org/3/library/importlib.metadata.html
https://pypi.org/project/importlib-metadata/
https://pypi.org/project/importlib-metadata/
https://www.python.org/dev/peps/pep-0566/

Briefcase Documentation, Release 0.3.6

It will also have the following keys, derived from your application’s pyproject.toml configuration:

• Name - app_name

• Formal-Name - formal_name

• App-ID - bundle and app_name, joined with a .

• Version - version

• Summary - description

The metadata may also contain the following keys, if they have been defined in your app’s pyproject.toml
configuration:

• Home-page - url

• Author - author

• Author-email - author_email

For example, the metadata for the app constructed by the Beeware Tutorial would contain:

Metadata-Version: 2.1
Briefcase-Version: 0.3.1
Name: helloworld
Formal-Name: Hello World
App-ID: com.example.helloworld
Version: 0.0.1
Home-page: https://example.com/helloworld
Author: Jane Developer
Author-email: jane@example.com
Summary: My first application

2.2.4 Contributing code to Briefcase

If you experience problems with Briefcase, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

Setting up your development environment

The recommended way of setting up your development environment for Briefcase is to use a virtual environment,
install the required dependencies and start coding:

macOS

Linux

Windows

$ git clone https://github.com/beeware/briefcase.git
$ cd briefcase
$ python3 -m venv venv
$. venv/bin/activate

$ git clone https://github.com/beeware/briefcase.git
$ cd briefcase
$ python3 -m venv venv
$. venv/bin/activate

2.2. How-to guides 15

https://docs.beeware.org/en/latest/tutorial/tutorial-1.html/
https://github.com/beeware/briefcase/issues
https://github.com/beeware/briefcase
https://github.com/beeware/briefcase/pulls
https://docs.python.org/3/library/venv.html

Briefcase Documentation, Release 0.3.6

C:\...>git clone https://github.com/beeware/briefcase.git
C:\...>cd briefcase
C:\...>py -m venv venv
C:\...>venv\Scripts\activate

To install all the development version of Briefcase, along with all it’s requirements, run the following commands
within your virtual environment:

macOS

Linux

Windows

$ (venv) pip install -e .

$ (venv) pip install -e .

C:\...>pip install -e .

Now you are ready to start hacking! Have fun!

Briefcase uses PyTest for its own test suite. It uses tox to manage the testing process. To set up a testing environment
and run the full test suite:

macOS

Linux

Windows

$ (venv) pip install tox
$ (venv) tox

$ (venv) pip install tox
$ (venv) tox

C:\...>pip install tox
C:\...>tox

By default this will run the test suite multiple times, once on each Python version supported by Briefcase, as well as
running some pre-commit checks of code style and validity. This can take a while, so if you want to speed up the
process while developing, you can run the tests on one Python version only:

macOS

Linux

Windows

(venv) $ tox -e py

(venv) $ tox -e py

C:\...>tox -e py

Or, to run using a specific version of Python, e.g. when you want to use Python 3.7:

macOS

16 Chapter 2. Community

https://pytest.org
https://tox.readthedocs.io/en/latest/

Briefcase Documentation, Release 0.3.6

Linux

Windows

(venv) $ tox -e py37

(venv) $ tox -e py37

C:\...>tox -e py37

substituting the version number that you want to target. You can also specify one of the pre-commit checks flake8,
docs or package to check code formatting, documentation syntax and packaging metadata, respectively.

Add change information for release notes

Briefcase uses towncrier to automate building release notes. To support this, every pull request needs to have a
corresponding file in the changes/ directory that provides a short description of the change implemented by the pull
request.

This description should be a high level summary of the change from the perspective of the user, not a deep technical
description or implementation detail. It should also be written in past tense (i.e., “Added an option to enable X” or
“Fixed handling of Y”).

See News Fragments for more details on the types of news fragments you can add. You can also see existing examples
of news fragments in the changes/ folder.

2.2.5 Contributing to the documentation

Here are some tips for working on this documentation. You’re welcome to add more and help us out!

First of all, you should check the Restructured Text (reST) and Sphinx CheatSheet to learn how to write your .rst file.

Create a .rst file

Look at the structure and choose the best category to put your .rst file. Make sure that it is referenced in the index of
the corresponding category, so it will show on in the documentation. If you have no idea how to do this, study the
other index files for clues.

Build documentation locally

To build the documentation locally, set up a development environment, and run:

macOS

Linux

Windows

(venv) $ tox -e docs

(venv) $ tox -e docs

C:\...>tox -e docs

2.2. How-to guides 17

https://pypi.org/project/towncrier/
https://pypi.org/project/towncrier/#news-fragments
http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html

Briefcase Documentation, Release 0.3.6

The output of the file should be in the build/sphinx/html folder. If there are any markup problems, they’ll raise
an error.

2.2.6 See Errors on iOS

If you have a beeware iOS project that has a crash, it can be difficult to see the stacktrace. Here’s how to do it -

1. Build your iOS project. You don’t have to start it.

2. Open that iOS project in Xcode. Click the Run button (looks like an arrow) and wait for the simulator to open.
Cause the app to crash.

3. Your stack trace ought to appear in the ‘debugger area’ at the bottom of the screen. If you can’t see that area,
you may have to activate it with View > Debug Area > Show Debug Area

18 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

2.2.7 Internal How-to guides

These guides are for the maintainers of the Briefcase project, documenting internal project procedures.

How to cut a Briefcase release

The release infrastructure for Briefcase is semi-automated, using GitHub Actions to formally publish releases.

This guide assumes that you have an upstream remote configured on your local clone of the Briefcase repository,
pointing at the official repository. If all you have is a checkout of a personal fork of the Briefcase repository, you can
configure that checkout by running:

$ git remote add upstream https://github.com/beeware/briefcase.git

The procedure for cutting a new release is as follows:

1. Check the contents of the upstream repository’s master branch:

$ git fetch upstream
$ git checkout --detach upstream/master

Check that the HEAD of release now matches upstream/master.

2. Make sure the branch is ready for release. Ensure that:

1. The version number has been bumped.

2. The release notes are up to date. If they are, the changes directory should be empty, except for the
template.rst file.

These two changes (the version bump and release notes update) should go through the normal pull request and
review process. They should generally comprise the last PR merged before the release occurs.

If the version number hasn’t been updated, or changes directory isn’t empty, you need to create a PR (using
the normal development process) that contains these changes. Run:

$ tox -e towncrier -- --draft

to review the release notes that will be included, and then:

$ tox -e towncrier

to generate the updated release notes. Submit the PR; once it’s been reviewed and merged, you can restart the
release process from step 1.

3. Tag the release, and push the tag upstream:

$ git tag v1.2.3
$ git push upstream v1.2.3

4. Pushing the tag will start a workflow to create a draft release on GitHub. You can follow the progress of the
workflow on GitHub; once the workflow completes, there should be a new draft release.

5. Edit the GitHub release. Add release notes (you can use the text generated by towncrier). Check the pre-release
checkbox (if necessary).

6. Double check everything, then click Publish. This will trigger a publication workflow on GitHub.

7. Wait for the package to appear on PyPI.

Congratulations, you’ve just published a release!

2.2. How-to guides 19

https://github.com/beeware/briefcase/tree/master/changes
https://github.com/beeware/briefcase/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/briefcase/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/briefcase/releases
https://github.com/beeware/briefcase/actions?query=workflow%3A%22Upload+Python+Package%22
https://pypi.org/project/briefcase/

Briefcase Documentation, Release 0.3.6

If anything went wrong during steps 3 or 5, you will need to delete the draft release from GitHub, and push an updated
tag. Once the release has successfully appeared on PyPI, it cannot be changed; if you spot a problem in a published
package, you’ll need to tag a completely new release.

2.2.8 Publishing your app

Some Briefcase platforms are linked to app distribution systems. This documentation covers how to publish your app
to the appropriate distribution system.

Android

Overview

The Google Play Store is the most widely-used Android app store. This guide focuses on how to distribute a BeeWare
app on the Google Play Store.

Build the app in release mode

Use Briefcase to build a release bundle for your application:

macOS

Linux

Windows

(venv) $ briefcase package android
[hello-world] Building Android App Bundle and APK in release mode...
...
[hello-world] Packaged android/Hello World/app/build/outputs/bundle/release/app-
→˓release.aab

(venv) $ briefcase package android
[hello-world] Building Android App Bundle and APK in release mode...
...
[hello-world] Packaged android/Hello World/app/build/outputs/bundle/release/app-
→˓release.aab

(venv) C:\...>briefcase package android
[hello-world] Building Android App Bundle and APK in release mode...
...
[hello-world] Packaged android\Hello World\app\build\outputs\bundle\release\app-
→˓release.aab

This will result in an Android App Bundle file being generated. An Android App Bundle is a publishing format that
includes all your app’s compiled code and resources.

Note: AAB and APK

You may have heard of the “Android Package”, or APK format. The AAB format is a newer format that simplifies
the process of uploading your app to the Play Store, allows Google to manage the signing process, and allows the app
bundle that is installed on your end-user’s device to be smaller.

20 Chapter 2. Community

https://developer.android.com/guide/app-bundle

Briefcase Documentation, Release 0.3.6

Sign the Android App Bundle

Create code signing identity

Before you sign the APK files, you need to create a code signing identity.

The Google Play Store requires that the Android App Bundle is signed before it is uploaded, using the Java jarsigner
tool.

In this example below, we assume your code signing identity is stored in upload-key-helloworld.jks under .
android within your home folder. We also assume that the app’s formal name is Hello World. You will need to
change the path to the AAB file based on your app’s formal name.

macOS

Linux

Windows

$ ~/.briefcase/tools/java/Contents/Home/bin/jarsigner -verbose -sigalg SHA1withRSA -
→˓digestalg SHA1 -keystore ~/.android/upload-key-helloworld.jks "android/Hello World/
→˓app/build/outputs/bundle/release/app-release.aab" upload-key -storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb
signing: base/native.pb
signing: base/resources.pb

>>> Signer
X.509, CN=Upload Key
[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

$ ~/.briefcase/tools/java/bin/jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -
→˓keystore ~/.android/upload-key-helloworld.jks "android/Hello World/app/build/
→˓outputs/bundle/release/app-release.aab" upload-key -storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb
signing: base/native.pb
signing: base/resources.pb

>>> Signer

(continues on next page)

2.2. How-to guides 21

Briefcase Documentation, Release 0.3.6

(continued from previous page)

X.509, CN=Upload Key
[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

C:\...> %HOMEPATH%\.briefcase\tools\java\bin\jarsigner.exe -verbose -sigalg
→˓SHA1withRSA -digestalg SHA1 -keystore %HOMEPATH%\.android\upload-key-helloworld.jks
→˓"android\Hello World\app\build\outputs\bundle\release\app-release.aab" upload-key -
→˓storepass android

adding: META-INF/MANIFEST.MF
adding: META-INF/UPLOAD-K.SF
adding: META-INF/UPLOAD-K.RSA
signing: BundleConfig.pb
signing: BUNDLE-METADATA/com.android.tools.build.libraries/dependencies.pb
signing: base/assets/python/app/README

...
signing: base/manifest/AndroidManifest.xml
signing: base/assets.pb
signing: base/native.pb
signing: base/resources.pb

>>> Signer
X.509, CN=Upload Key
[trusted certificate]

jar signed.

Warning:
The signer's certificate is self-signed.

You can safely ignore the warning about the signer’s certificate being self-signed. Google will manage the process of
signing the app with a verified certificate when you upload your app for distribution.

Add the app to the Google Play store

To publish to the Google Play store, you will need a Google Play Developer account, which costs ~$25 USD per year.
You will then need to provide information for your app’s store listing including an icon and screenshots, upload the
app to Google, and finally roll the app out to production.

Register for a Google Play Developer account

Registering for a Google Play Developer account requires a Google Account. You will need to pay registration fee
and accept an agreement in the process.

To check if you already have a Google Play Developer account, you can visit the Google Play console. If you see a
button to Publish an Android App on Google Play or a button to Create Application, you can skip this step.

To create your Google Play developer account, pay the fee, and review the agreements, follow Google’s documenta-
tion.

22 Chapter 2. Community

https://play.google.com/apps/publish/
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en
https://support.google.com/googleplay/android-developer/answer/6112435?hl=en

Briefcase Documentation, Release 0.3.6

Create a listing

Visit the Google Play console. You will see a button labeled Publish an Android App on Google Play or a button to
Create Application. Click it.

Once you’ve done that, click Create Application. Choose a language and write a brief app title, up to 50 characters.
We suggest making this the same as your app’s Formal Name in its pyproject.toml.

This will take you to Store Listing section of your app. You will need to provide a short app description (up to 80
characters) and a full description (up to 4000 characters). Your app metadata may be helpful here.

You will also need to provide a collection of assets that will be used to promote your application:

• A 512x512px icon. This will be the icon that appears in the Play Store. It should match the icon you set on the
application itself.

• At least 2 screen screenshots of the app. Google recommends using a screenshot without framing. One way
to capture such a screenshot is with the Android emulator’s screenshot functionality (the camera icon on the
simulator controls). This allows your screenshot to contain just what appears on the screen rather than a picture
of the virtual device. This will store a file in your Desktop folder.

Screenshots must be at least 320px on their smallest dimension, no larger than 3480px on their largest dimension,
and can’t have an spect ratio more extreme than 2:1. A screenshot from the Android emulator typically fulfills
these requirements.

• A 1024x500px feature graphic. A feature graphic visually represents the purpose of the app or your logo and
can optionally include a screenshot of the app in use, typically including device framing.

Google Play supports optional graphic assets including promo videos, TV banners, and 360 degree stereoscopic im-
ages. See also Google’s advice on graphic assets.

Once you’ve completed the store listing, you’ll need to fill out a range of other details about your app, including the
category where it should appear in the Play Store, pricing details, details about the app’s content and it’s suitability
for children, and contact details for you as a developer. The navigation pane (typically on the left side of the screen)
contains grayed out check marks covering all the sections with required details. Visit each of these sections in turn;
when you have met the requirements of each section, the checkmark will turn green. Once all the checkmarks are
green, you’re ready to release your app.

Create a release

Click App releases in the navigation pane. To produce a production app (i.e., an app in the public Play Store that
anyone can download) click Manage within the Production track, then select Create Release. If prompted to enable
App Signing by Google Play, click Continue.

Note: Non-production releases

The Play Store also supports releasing your app for internal, alpha and beta testing. Google’s documentation contains
more details about creating test releases.

In an earlier section of this tutorial, we used briefcase publish and jarsigner to create a signed An-
droid App Bundle file. It is stored at android/Hello World/app/build/outputs/bundle/release/
app-release.aab (subtituting the name of your own app as necessary). Upload this file to the Google Play
console within Browse Files under Android App Bundles and APKs to add.

You will need to write release notes for the app in the What’s new in this release? section. If this is your first upload
of the app, you can use something like “Initial application release.” Review your application details,

2.2. How-to guides 23

https://play.google.com/apps/publish/
https://developer.android.com/distribute/marketing-tools/device-art-generator
https://support.google.com/googleplay/android-developer/answer/1078870
https://support.google.com/googleplay/android-developer/answer/3131213
https://support.google.com/googleplay/android-developer/answer/3131213

Briefcase Documentation, Release 0.3.6

Once you have answered those questions, you can switch back to the App releases tab. Click Edit release, save your
changes, and click Start Rollout To Production.

The Google Play Store will now review your app. You will be emailed if any updates are required; otherwise, after a
day or two, your app will be rolled out to the Play Store.

Publish an update

At some point, you’ll want to publish an updated version of your application. Generate a fresh AAB file, signed with
the same certificate as your original release. Then log into the Play Store console, and select your application. Select
Release Management in the navigation bar, then App Releases.

At this point, the release process is the same as it was for your initial release; create a release, upload your AAB file,
and submit the application for rollout.

2.3 About Briefcase

2.3.1 Frequently Asked Questions

What version of Python does Briefcase support?

Python 3.5 or higher.

What platforms does Briefcase support?

Briefcase currently has support for:

• macOS (producing DMG files, or raw .app files)

• Linux (producing AppImage files)

• Windows (producing MSI installers)

• iOS (producing Xcode projects)

• Android (producing Gradle projects)

Support for other some other packaging formats (e.g., NSIS installers for Windows; Snap and Flatpak installers for
Linux) and other operating systems (e.g., tvOS, watchOS, WearOS) are on our roadmap.

Briefcase’s platform support is built on a plugin system, so if you want to add support for a custom platform, you can
do so; or, you can contribute the backend to Briefcase itself.

How do I detect if my app is running in a Briefcase-packaged container?

Briefcase adds a PEP566 metadata file when it installs your app’s code. The metadata can be retrieved at runtime
as described in the Accessing Briefcase packaging metadata at runtime how-to. You can determine if your app was
packaged with Briefcase by testing for the existence of the Briefcase-Version tag:

in_briefcase = 'Briefcase-Version' in metadata

24 Chapter 2. Community

https://www.python.org/dev/peps/pep-0566/

Briefcase Documentation, Release 0.3.6

2.3.2 The Briefcase Developer and User community

Briefcase is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• BeeWare Getting Help page

Code of Conduct

The BeeWare community has a strict Code of Conduct. All users and developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a violation of this code, please contact the
project founder Russell Keith-Magee.

Contributing

If you experience problems with Briefcase, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

2.3.3 Success Stories

Want to see examples of Briefcase in use? Here’s some:

• Travel Tips is an app in the iOS App Store that was packaged for distribution using Briefcase.

• Mu is a simple code editor for beginner programmers. It uses Briefcase to prepare a macOS installer.

• Napari is a multi-dimensional image viewer for python. It uses Briefcase to prepare bundled Windows, MacOS,
and Linux installers.

2.3.4 Release History

0.3.6 (2022-02-28)

Features

• On macOS, iOS, and Android, briefcase run now displays the application logs once the application has
started. (#591)

• Xcode detection code now allows for Xcode to be installed in locations other than /Applications/Xcode.
app. (#622)

• Deprecated support for Python 3.6. (#653)

2.3. About Briefcase 25

http://beeware.org
https://twitter.com/pybeeware
https://beeware.org/community/getting-help/
http://beeware.org/contributing/index.html
mailto:russell@keith-magee.com
https://github.com/beeware/briefcase/issues
https://github.com/beeware/briefcase
https://github.com/beeware/briefcase/pulls
https://itunes.apple.com/au/app/travel-tips/id1336372310
https://codewith.mu
https://napari.org/

Briefcase Documentation, Release 0.3.6

Bugfixes

• Existing app packages are now cleared before reinstalling dependencies. (#644)

• Added binary patcher for linuxtools AppImage to increase compatibility. (#667)

Improved Documentation

• Documentation on creating macOS/iOS code signing identities has been added (#641)

Misc

• #587, #588, #592, #598, #621, #643, #654, #670

0.3.5 (2021-03-06)

Features

• macOS projects can now be generated as an Xcode project. (#523)

Bugfixes

• macOS apps are now built as an embedded native binary, rather than a shell script invoking a Python script. This
was necessary to provide better support for macOS app notarization and sandboxing. (#523)

• Fixed the registration of setuptools entry points caused by a change in case sensitivity handling in Setuptools
53.1.0. (#574)

Misc

• #562

0.3.4 (2021-01-03)

Features

• Added signing options for all platforms. App signing is only implemented on macOS, but --no-sign can
now be used regardless of your target platform. (#486)

• Windows MSI installers can be configured to be per-machine, system-wide installers. (#498)

• Projects can specify a custom branch for the template used to generate the app. (#519)

• Added the –no-run flag to the dev command. This allows developers to install app dependencies without running
the app. (#522)

• The new project wizard will now warn users when they select a platform that doesn’t support mobile deployment.
(#539)

26 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

Bugfixes

• Modified the volume mounting process to allow for SELinux. (#500)

• Fixed missing signature for Python executable in macOS app bundle. This enables the packaged dmg to be
notarized by Apple. (#514)

• Modified the Windows tests to allow them to pass on 32-bit machines. (#521)

• Fixed a crash when running with verbose output. (#532)

Improved Documentation

• Clarified documentation around system_requires dependencies on Linux. (#459)

Misc

• #465, #475, #496, #512, #518

0.3.3 (2020-07-18)

Features

• WiX is now auto-downloaded when the MSI backend is used. (#389)

• The upgrade command now provides a way to upgrade tools that Briefcase has downloaded, including WiX,
Java, linuxdeploy, and the Android SDK. (#450)

Bugfixes

• Binary modules in Linux AppImages are now processed correctly, ensuring that no references to system libraries
are retained in the AppImage. (#420)

• If pip is configured to use a per-user site_packages, this no longer clashes with the installation of application
packages. (#441)

• Docker-using commands now check whether the Docker daemon is running and if the user has permission to
access it. (#442)

0.3.2 (2020-07-04)

Features

• Added pytest coverage to CI/CD process. (#417)

• Application metadata now contains a Briefcase-Version indicator. (#425)

• The device list returned by briefcase run android now uses the Android device model name and unique
ID e.g. a Pixel 3a shows up as Pixel 3a (adbDeviceId). (#433)

• Android apps are now packaged in Android App Bundle format. This allows the Play Store to dynmically build
the smallest APK appropriate to a device installing an app. (#438)

• PursuedPyBear is now included in the new project wizard. (#440)

2.3. About Briefcase 27

Briefcase Documentation, Release 0.3.6

Bugfixes

• iOS builds will now warn if the Xcode command line tools are the active. (#397)

• Linux Docker builds no longer use interactive mode, allowing builds to run on CI (or other TTY-less devices).
(#439)

Improved Documentation

• Documented the process of signing Android apps & publishing them to the Google Play store. (#342)

Misc

• #428

0.3.1 (2020-06-13)

Features

• The Linux AppImage backend has been modified to use Docker. This ensures that the AppImage is always
built in an environment that is compatible with the support package. It also enables Linux AppImages to be
built on macOS and Windows. “Native” builds (i.e., builds that don’t use Docker) can be invoked using the
--no-docker argument. (#344)

• A PYTHONPATH property has been added to AppConfig that describes the sys.path changes needed to
run the app. (#401)

• Ad-hoc code signing is now possible on macOS with briefcase package --adhoc-sign. (#409)

• Android apps can now use use - in their bundle name; we now convert - to _ in the resulting Android package
identifier and Java package name. (#415)

• Mobile applications now support setting the background color of the splash screen, and setting a build identifier.
(#422)

• Android now has a package command that produces the release APK. After manually signing this APK, it
can be published to the Google Play Store. (#423)

Bugfixes

• Some stray punctuation in the Android device helper output has been removed. (#396)

• An explicit version check for Docker is now performed. (#402)

• The Linux build process ensures the Docker user matches the UID/GID of the host user. (#403)

• Briefcase now ensures that the Python installation ecosystem tools (pip, setuptools, and wheel), are all
present and up to date. (#421)

28 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

Improved Documentation

• Documented that Windows MSI builds produce per-user installable MSI installers, while still supporting per-
maching installs via the CLI. (#382)

• CONTRIBUTING.md has been updated to link to Briefcase-specific documentation. (#404)

• Removed references to the build-system table in pyproject.toml. (#410)

Misc

• #380, #384

0.3.0 (2020-04-18)

Features

• Converted Briefcase to be a PEP518 tool, rather than a setuptools extension. (#266)

0.2.10

• Improved pre-detection of XCode and related tools

• Improved error handling when starting external tools

• Fixed iOS simulator integration

0.2.9

• Updated mechanism for starting the iOS simulator

• Added support for environment markers in install_requires

• Improved error handling when Wix isn’t found

0.2.8

• Corrects packaging problem with urllib3, caused by inconsistency between requests and boto3.

• Corrected problems with Start menu targets being created on Windows.

0.2.7

• Added support for launch images for iPhone X, Xs, Xr, Xs Max and Xr Max

• Completed removal of internal pip API dependencies.

2.3. About Briefcase 29

Briefcase Documentation, Release 0.3.6

0.2.6

• Added support for registering OS-level document type handlers.

• Removed dependency on an internal pip API.

• Corrected invocation of gradlew on Windows

• Addressed support for support builds greater than b9.

0.2.5

• Restored download progress bars when downloading support packages.

0.2.4

• Corrected a bug in the iOS backend that prevented iOS builds.

0.2.3

• Bugfix release, correcting the fix for pip 10 support.

0.2.2

• Added compatibility with pip 10.

• Improved Windows packaging to allow for multiple executables

• Added a --clean command line option to force a refresh of generated code.

• Improved error handling for bad builds

0.2.1

• Improved error reporting when a support package isn’t available.

0.2.0

• Added -s option to launch projects

• Switch to using AWS S3 resources rather than Github Files.

0.1.9

• Added a full Windows installer backend

30 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

0.1.8

• Modified template rollout process to avoid API limits on Github.

0.1.7

• Added check for existing directories, with the option to replace existing content.

• Added a Linux backend.

• Added a Windows backend.

• Added a splash screen for Android

0.1.6

• Added a Django backend (@glasnt)

0.1.5

• Added initial Android template

• Force versions of pip (>= 8.1) and setuptools (>=27.0)

• Drop support for Python 2

0.1.4

• Added support for tvOS projects

• Moved to using branches in the project template repositories.

0.1.3

• Added support for Android projects using VOC.

0.1.2

• Added support for having multi-target support projects. This clears the way for Briefcase to be used for watchOS
and tvOS projects, and potentially for Python-OSX-support and Python-iOS-support to be merged into a single
Python-Apple-support.

0.1.1

• Added support for app icons and splash screens.

2.3. About Briefcase 31

Briefcase Documentation, Release 0.3.6

0.1.0

Initial public release.

2.4 Reference

This is the technical reference for public APIs provided by Briefcase.

2.4.1 Configuration options

Briefcase is a PEP518-compliant build tool. It uses a pyproject.toml file, in the root directory of your project, to
provide build instructions for the packaged file.

If you have an application called “My App”, with source code in the src/myapp directory, the simplest possible
pyproject.toml Briefcase configuration file would be:

[tool.briefcase]
project_name = "My Project"
bundle = "com.example"
version = "0.1"

[tool.briefcase.app.myapp]
formal_name = "My App"
description = "My first Briefcase App"
sources = ['src/myapp']

The configuration sections are tool specific, and start with the prefix tool.briefcase.

The location of the pyproject.toml file is treated as the root of the project definition. Briefcase should be
invoked in a directory that contains a pyproject.toml file, and all relative file path references contained in the
pyproject.toml file will be interpreted relative to the directory that contains the pyproject.toml file.

Configuration sections

A project that is packaged by Briefcase can declare multiple applications. Each application is a distributable product
of the build process. A simple project will only have a single application. However, a complex project may contain
multiple applications with shared code.

Each setting can be specified:

• At the level of an output format (e.g., settings specific to building macOS DMGs);

• At the level of an platform for an app (e.g., macOS specific settings);

• At the level of an individual app; or

• Globally, for all applications in the project.

When building an application in a particular output format, Briefcase will look for settings in the same order. For
example, if you’re building a macOS DMG for an application called myapp, Briefcase will look for macOS DMG
settings for myapp, then for macOS settings for myapp, then for myapp settings, then for project-level settings.

32 Chapter 2. Community

https://www.python.org/dev/peps/pep-0518/

Briefcase Documentation, Release 0.3.6

[tool.briefcase]

The base [tool.briefcase] section declares settings that project specific, or are are common to all applications in this
repository.

[tool.briefcase.app.<app name>]

Configuration options for a specific application.

<app name> must adhere to a valid Python distribution name as specified in PEP508.

[tool.briefcase.app.<app name>.<platform>]

Configuration options for an application that are platform specific. The platform must match a name for a platform
supported by Briefcase (e.g., macOS or windows). A list of the platforms supported by Briefcase can be obtained by
running briefcase -h, and inspecting the help for the platform option

[tool.briefcase.app.<app name>.<platform>.<output format>]

Configuration options that are specific to a particular output format. For example, macOS applications can be gener-
ated in app or dmg format.

Project configuration

Required values

bundle

A reverse-domain name that can be used to identify resources for the application e.g., com.example. The bundle
identifier will be combined with the app name to produce a unique application identifier - e.g., if the bundle identifier
is com.example and the app name is myapp`, the application will be identified as ``com.
example.myapp.

project_name

The project is the collection of all applications that are described by the briefcase configuration. For projects with a
single app, this may be the same as the formal name of the solitary packaged app.

version

A PEP440 compliant version string.

Examples of valid version strings:

• 1.0

• 1.2.3

• 1.2.3.dev4 - A development release

2.4. Reference 33

https://www.python.org/dev/peps/pep-0508/#names
https://www.python.org/dev/peps/pep-0440/

Briefcase Documentation, Release 0.3.6

• 1.2.3a5 - An alpha pre-release

• 1.2.3b6 - A Beta pre-release

• 1.2.3rc7 - A release candidate

• 1.2.3.post8 - A post-release

Optional values

author

The person or organization responsible for the project.

author_email

The contact email address for the person or organization responsible for the project.

url

A URL where more details about the project can be found.

Application configuration

Required

description

A short, one-line description of the purpose of the application.

sources

A list of paths, relative to the pyproject.toml file, where source code for the application can be found. The contents of
any named files or folders will be copied into the application bundle. Parent directories in any named path will not be
included. For example, if you specify src/myapp as a source, the contents of the myapp folder will be copied into
the application bundle; the src directory will not be reproduced.

Unlike most other keys in a configuration file, sources is cumlative setting. If an application defines sources at the
global level, application level, and platform level, the final set of sources will be the concatenation of sources from all
levels, starting from least to most specific.

34 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

Optional values

author

The person or organization responsible for the application.

author_email

The contact email address for the person or organization responsible for the application.

build

A build identifier. An integer, used in addition to the version specifier, to identify a specific compiled version of an
application.

formal_name

The application name as it should be displayed to humans. This name may contain capitalization and punctuation. If
it is not specified, the name will be used.

icon

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the icon for
the application. The path should exclude the extension; Briefcase will append a platform appropriate extension
when configuring the application. For example, an icon specification of icon = "resources/icon" will use
resources/icon.icns on macOS, and resources/icon.ico on Windows.

Some platforms require multiple icons, at different sizes; these will be handled by appending the required size to the
provided icon name. For example, iOS requires multiple icon sizes (ranging from 20px to 1024px); Briefcase will
look for resources/icon-20.png, resources/icon-1024.png, and so on. The sizes that are required are
determined by the platform template.

installer_icon

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the icon for the
installer. As with icon, the path should exclude the extension, and a platform-appropriate extension will be appended
when the application is built.

installer_background

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the background
for the installer. As with splash, the path should exclude the extension, and a platform-appropriate extension will
be appended when the application is built.

2.4. Reference 35

Briefcase Documentation, Release 0.3.6

requires

A list of packages that must be packaged with this application.

Unlike most other keys in a configuration file, requires is cumlative setting. If an application defines requirements
at the global level, application level, and platform level, the final set of requirements will be the concatenation of
requirements from all levels, starting from least to most specific.

splash

A path, relative to the directory where the pyproject.toml file is located, to an image to use as the splash screen
for the application. The path should exclude the extension; Briefcase will append a platform appropriate extension
when configuring the application.

Some platforms require multiple splash images, at different sizes; these will be handled by appending the required size
to the provided icon name. For example, iOS requires multiple splash images, (1024px, 2048px and 3072px); with
a splash setting of resources/my_splash, Briefcase will look for resources/my_splash-1024.png,
resources/my_splash-2045.png, and resources/my_splash-3072.png. The sizes that are required
are determined by the platform template.

Some platforms also require different variants. For example, Android requires splash screens for “normal”, “large”
and “xlarge” devices. These variants can be specified by qualifying the splash specification:

splash.normal = “resource/normal-splash” splash.large = “resource/large-splash” splash.xlarge =
“resource/xlarge-splash”

These settings can, if you wish, all use the same prefix.

If the platform requires different sizes for each variant (as Android does), those size will be appended
to path provided by the variant specifier. For example, using the previous example, Android would
look for resource/normal-splash-320.png, resource/normal-splash-480.png, resource/
large-splash.480.png, resource/xlarge-splash-720.png, amongst others.

If the platform output format does not use a splash screen, the splash setting is ignored.

splash_background_color

A hexidecimal RGB color value (e.g., #6495ED) to use as the background color for splash screens.

If the platform output format does not use a splash screen, this setting is ignored.

support_package

A file path or URL pointing at a tarball containing a Python support package. (i.e., a precompiled, embeddable Python
interpreter for the platform)

If this setting is not provided, Briefcase will use the default support package for the platform.

36 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

support_revision

The specific revision of a support package that should be used. By default, Briefcase will always use the most recently
released support package; if you specify a support revision, the support package will be pinned to that version for your
app.

If the support package is a URL, a query argument of revision=<support_revision> will be added to the
support package URL when it is downloaded.

If the support package is a file path, this argument is ignored.

supported

Indicates that the platform is not supported. For example, if you know that the app cannot be deployed to Android
for some reason, you can explicitly prevent deployment by setting supported=False in the Android section of the app
configuration file.

If supported is set to false, the create command will fail, advising the user of the limitation.

template

A file path or URL pointing at a cookiecutter template for the output format.

If this setting is not provided, Briefcase will use a default template for the output format and Python version.

template_branch

The branch of the project template to use when generating the app. If the template is a local file, this attribute will be
ignored. If not specified, Briefcase will use a branch matching the Python version in use (i.e., the 3.8 branch will be
used when Python 3.8 is used to generate the app).

url

A URL where more details about the application can be found.

Document types

Applications in a project can register themselves with the operating system as handlers for specific document types by
adding a document_type configuration section for each document type the application can support. This section
follows the format:

[tool.briefcase.app.<app name>.document_type.<extension>]

or, for a platform specific definition:

[tool.briefcase.app.<app name>.<platform>.document_type.<extension>]

where extension is the file extension to register. For example, myapp could register as a handler for PNG image
files by defining the configuration section [tool.briefcase.app.myapp.document_type.png].

The document type declaration requires the following settings:

2.4. Reference 37

https://github.com/cookiecutter/cookiecutter

Briefcase Documentation, Release 0.3.6

description

A short, one-line description of the document format.

icon

A path, relative to the directory where the pyproject.toml file is located, to an image for an icon to register for
use with documents of this type. The path should exclude the extension; Briefcase will append a platform appropriate
extension when configuring the applcation. For example, an icon specification of:

icon = "resources/icon"

will use resources/icon.icns on macOS, and resources/icon.ico on Windows.

Some platforms also require different variants (e.g., both square and round icons). These variants can be specified by
qualifying the icon specification:

icon.round = “resource/round-icon” icon.square = “resource/square-icon”

Some platforms require multiple icons, at different sizes; these will be handled by appending the required size to the
provided icon name. For example, iOS requires multiple icon sizes (ranging from 20px to 1024px); Briefcase will
look for resources/icon-20.png, resources/icon-1024.png, and so on. The sizes that are required are
determined by the platform template.

If a platform requires both different sizes and variants, the variant handling and size handling will be com-
bined. For example, Android requires round and square icons, in sizes ranging from 48px to 192px; Brief-
case will look for resource/round-icon-42.png, resource/square-icon-42.png, resource/
round-icon-192.png, and so on.

url

A URL for help related to the document format.

2.4.2 Command reference

new

Start a new Briefcase project. Runs a wizard to ask questions about your new application, and creates a stub project
using the details provided.

Usage

To start a new application, run:

$ briefcase new

38 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

Options

The following options can be provided at the command line.

-t <template> / --template <template>

A local directory path or URL to use as a cookiecutter template for the new project.

If a URL is provided, the master branch of the referenced repository will be used.

dev

Run the application in developer mode.

Usage

To run the app, run:

$ briefcase dev

The first time the application runs in developer mode, any dependencies listed in a requires configuration item in
pyproject.toml will be installed into the current environment.

Options

The following options can be provided at the command line.

-a <app name> / --app <app name

Run a specific application target in your project. This argument is only required if your project contains more than one
application target. The app name specified should be the machine-readable package name for the app.

-d / --update-dependencies

Update application dependencies.

create

Create a scaffold for an application installer. By default, targets the current platform’s default output format.

2.4. Reference 39

Briefcase Documentation, Release 0.3.6

Usage

To create a scaffold for the default output format for the current platform:

$ briefcase create

To create a scaffold for a different platform:

$ briefcase create <platform>

To create a scaffold for a specific output format:

$ briefcase create <platform> <output format>

If a scaffold for the nominated platform already exists, you’ll be prompted to delete and regenerate the app.

Options

There are no additional command line options.

update

While you’re developing an application, you may need to rapidly iterate on the code, making small changes and then
re-building. The update command applies any changes you’ve made to your codebase to the packaged application
code.

It will not update dependencies or installer resources unless specifically requested.

Usage

To repackage your application’s code for the current platform’s default output format:

$ briefcase update

To repackage your application’s code for a different platform:

$ briefcase update <platform>

To repackage your application’s code for a specific output format:

$ briefcase update <platform> <output format>

Options

The following options can be provided at the command line.

40 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

-d / --update-dependencies

Update application dependencies.

-r / --update-resources

Update application resources (e.g., icons and splash screens).

build

Compile/build an application. By default, targets the current platform’s default output format.

This will only compile the components necessary to run the application. It won’t necessarily result in the generation
of an installable artefact.

Usage

To build the application for the default output format for the current platform:

$ briefcase build

To build the application for a different platform:

$ briefcase build <platform>

To build the application for a specific output format:

$ briefcase build <platform> <output format>

Build tool dependencies

Building for some platforms depends on the build tools for the platform you’re targetting being available on the
platform you’re using. For example, you will only be able to create iOS applications on macOS. Briefcase will check
for any required tools, and will report an error if the platform you’re targetting is not supported.

Options

The following options can be provided at the command line.

-u / --update

Update the application’s source code before running. Equivalent to running:

$ briefcase update
$ briefcase build

2.4. Reference 41

Briefcase Documentation, Release 0.3.6

run

Starts the application, using the packaged version of the application code. By default, targets the current platform’s
default output format.

If the output format is an executable (e.g., a macOS .app file), the run command will start that executable. If the
output is an installer, run will attempt to replicate as much as possible of the runtime environment that would be
installed, but will not actually install the app. For example, on Windows, run will use the interpreter that will be
included in the installer, and the versions of code and dependencies that will be installed, but won’t run the installer to
produce Start Menu items, registry records, etc.

Usage

To run your application on the current platform’s default output format:

$ briefcase run

To run your application for a different platform:

$ briefcase run <platform>

To run your application using a specific output format:

$ briefcase run <platform> <output format>

Options

The following options can be provided at the command line.

-a <app name> / --app <app name

Run a specific application target in your project. This argument is only required if your project contains more than one
application target. The app name specified should be the machine-readable package name for the app.

-u / --update

Update the application’s source code before running. Equivalent to running:

$ briefcase update
$ briefcase run

42 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

package

Compile/build an application installer. By default, targets the current platform’s default output format.

This will produce an installable artefact.

Usage

To build an installer of the default output format for the current platform:

$ briefcase package

To build an installer for a different platform:

$ briefcase package <platform>

To build an installer for a specific output format:

$ briefcase package <platform> <output format>

Packaging tool dependencies

Building installers for some platforms depends on the build tools for the platform you’re targetting being available on
the platform you’re using. For example, you will only be able to create iOS applications on macOS. Briefcase will
check for any required tools, and will report an error if the platform you’re targetting is not supported.

Options

The following options can be provided at the command line.

-u / --update

Update and recompile the application’s code before running. Equivalent to running:

$ briefcase update
$ briefcase package

publish

--no-sign

Don’t perform code signing on the app.

2.4. Reference 43

Briefcase Documentation, Release 0.3.6

--adhoc-sign

Sign app with adhoc identity.

-i <identity> / --identity <identity>

The code signing identity to use when signing the app.

publish

COMING SOON

Uploads your application to a publication channel. By default, targets the current platform’s default output format,
using that format’s default publication channel.

You may need to provide additional configuration details (e.g., authentication credentials), depending on the publica-
tion channel selected.

Usage

To publish the application artefacts for the current platform’s default output format to the default publication channel:

$ briefcase publish

To publish the application artefacts for a different platform:

$ briefcase publish <platform>

To publish the application artefacts for a specifif output format:

$ briefcase publish <platform> <output format>

Options

The following options can be provided at the command line.

-c <channel> / --channel <channel>

Nominate a publication channel to use.

upgrade

Briefcase uses external tools to manage the process of packaging apps. Where possible, Briefcase will manage the
process of obtaining those tools. This is currently done for

• WiX (used by the Windows MSI backend)

• linuxdeploy (used by the Linux AppImage backend)

• Java JDK (used by the Android backed)

• Android SDK (used by the Android backend)

44 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

Over time, it may be necessary to upgrade these tools. The upgrade command provides a way to perform these
upgrades.

If you are managing your own version of these tools (e.g., if you have downloaded a version of WiX and have set the
WIX_HOME environment variable), you must manage any upgrades on your own.

Usage

To see what tools are currently being managed by Briefcase:

$ briefcase upgrade --list

To upgrade all the tools that are currently being managed by Briefcase:

$ briefcase upgrade

To upgrade a specific tool:

$ briefcase upgrade <tool_name>

Options

The following options can be provided at the command line.

-l / --list

List the tools that are currently being managed by Briefcase.

2.4.3 Platform support

macOS

The default output format for macOS is an app.

Briefcase also supports creating an .Xcode project which in turn can be used to build an app.

Both output formats support packaging as a macOS DMG or as a standalone signed app bundle.

.app bundle

A macOS .app bundle is a collection of directory with a specific layout, and with some key metadata. If this structure
and metadata exists, macOS treats the folder as an executable file, giving it an icon.

.app bundles can be copied around as if they are a single file. They can also be compressed to reduce their size for
transport.

2.4. Reference 45

Briefcase Documentation, Release 0.3.6

Icon format

.app bundles use .icns format icons.

Splash Image format

.app bundles do not support splash screens or installer images.

Xcode project

Briefcase supports creating a full Xcode project for a macOS app. This project can then be used to build an actual app
bundle, with the briefcase build command or directly from Xcode.

Icon format

macOS Xcode projects use .png format icons. An application must provide icons of the following sizes:

• 16px

• 32px

• 64px

• 128px

• 256px

• 512px

• 1024px

Splash Image format

macOS Xcode projects do not support splash screens.

Windows

The default output format for Windows is an MSI Installer.

MSI Installer

An MSI installer is a common format used for the installation, maintenance, and removal of Windows software. It
contains the files to be distributed, along with metadata supporting the files to be installed, including details such as
registry entries. It includes a GUI installer, and automated generation of the uninstallation sequence.

Briefcase uses the WiX Toolset to build installers. WiX, in turn, requires that .NET Framework 3.5 is enabled. To
ensure .NET Framework 3.5 is enabled:

1. Open the Windows Control Panel

2. Traverse to Programs -> Programs and Features

3. Select “Turn Windows features On or Off”

46 Chapter 2. Community

https://wixtoolset.org/

Briefcase Documentation, Release 0.3.6

4. Ensure that “.NET framework 3.5 (includes .NET 2.0 and 3.0)” is selected.

Icon format

MSI installers use .ico format icons.

Splash Image format

MSI installers do not support splash screens or installer images.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.windows section of your
pyproject.toml file.

system_installer

Controls whether the app will be installed as a per-user or per-machine app. Per-machine apps are “system” apps,
and require admin permissions to run the installer; however, they are installed once and shared between all users on a
computer.

If true the installer will attempt to install the app as a per-machine app, available to all users. Defaults to a per-user
install.

version_triple

Python and Briefcase allow any valid PEP440 version number as a version specifier. However, MSI installers
require a strict integer triple version number. Many PEP440-compliant version numbers, such as “1.2”, “1.2.3b3”, and
“1.2.3.4”, are invalid for MSI installers.

Briefcase will attempt to convert your version into a valid MSI value by extracting the first three parts of the main
series version number (excluding pre, post and dev version indicators), padding with zeros if necessary:

• 1.2 becomes 1.2.0

• 1.2b4 becomes 1.2.0

• 1.2.3b3 becomes 1.2.3

• 1.2.3.4 becomes 1.2.3.

However, if you need to override this default value, you can define version_triple in your app settings. If
provided, this value will be used in the MSI configuration file instead of the auto-generated value.

2.4. Reference 47

https://www.python.org/dev/peps/pep-0440/

Briefcase Documentation, Release 0.3.6

Features

Briefcase produced MSI installers do not require elevated privileges for installation; they default to per-user installs.
The installer can be installed for all users using the CLI, with:

> msiexec.exe /i <msi-filename> MSIINSTALLPERUSER=""

Linux

The default output format for Linux is AppImage.

Linux AppImage

AppImage provides a way for developers to provide “native” binaries for Linux users. It allow packaging applications
for any common Linux based operating system, including Ubuntu, Debian, Fedora, and more. AppImages contain all
the dependencies that cannot be assumed to be part of each target system, and will run on most Linux distributions
without further modifications.

Packaging binaries for Linux is complicated, because of the inconsistent library versions present on each distribution.
An AppImage can be executed on any Linux distribution with a version of libc greater than or equal the version of
the distribution where the AppImage was created.

To simplify the packaging process, Briefcase provides a pre-compiled Python support library. This support library was
compiled on Ubuntu 16.04, which means the AppImages build by Briefcase can be used on any Linux distribution of
about the same age or newer - but those AppImages must be compiled on Ubuntu 16.04.

This means you have four options for using Briefcase to compile a Linux AppImage:

1. Run the version-sensitive parts of the build process inside Docker. This is the default behavior of Briefcase.
This also means that it is possible to build Linux binaries on any platform that can run Docker.

2. Install Ubuntu 16.04 on your own machine.

3. Find a cloud or CI provider that can provide you an Ubuntu 16.04 machine for build purposes. Github Actions,
for example, provides Ubuntu 16.04 as a build option. Again, you’ll need to use the --no-docker command
line option.

4. Build your own version of the BeeWare Python support libraries. If you take this approach, be aware that your
AppImage will only be as portable as the version of libc that is available on the distribution you use. If you
build using Ubuntu 19.10, for example, you can expect that only people on the most recent versions of another
distribution will be able to run your AppImage.

Icon format

AppImages use .png format icons.

48 Chapter 2. Community

https://appimage.org
https://github.com/beeware/Python-Linux-support

Briefcase Documentation, Release 0.3.6

Splash Image format

AppImages do not support splash screens or installer images.

Additional options

The following options can be provided at the command line when producing AppImages.

--no-docker

Use native execution, rather than using Docker to start a container.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.linux section of your
pyproject.toml file.

system_requires

A list of operating system packages that must be installed for the AppImage build to succeed. If a Docker build is
requested, this list will be passed to the Docker context when building the container for the app build. By default,
entries should be Ubuntu 16.04 apt package requirements. For example,

system_requires = [‘libgirepository1.0-dev’, ‘libcairo2-dev’]

would make the GTK GI and Cairo operating system libraries available to your app.

If you see errors during briefcase build of the form:

Could not find dependency: libSomething.so.1

but the app works under briefcase dev, the problem may be an incomplete system_requires definition.
The briefcase build process generates a new environment that is completely isolated from your development
environment, so if your app has any operating system dependencies, they must be listed in your system_requires
definition.

iOS

When generating an iOS project, Briefcase produces an Xcode project.

Icon format

iOS projects use .png format icons. An application must provide icons of the following sizes:

• 20px

• 29px

• 40px

• 58px

2.4. Reference 49

Briefcase Documentation, Release 0.3.6

• 60px

• 76px

• 80px

• 87px

• 120px

• 152px

• 167px

• 180px

• 1024px

Splash Image format

iOS projects use .png format splash screen images. A splash screen should be a square, transparent image, provided
in the following sizes:

• 1024px

• 2048px

• 3072px

You can specify a background color for the splash screen using the splash_background_color configuration
setting.

iOS projects do not support installer images.

Additional options

The following options can be provided at the command line when producing iOS projects

build

-d <device> / --device <device>

The device simulator to target. Can be either a UDID, a device name (e.g., "iPhone 11"), or a device name and
OS version ("iPhone 11::13.3").

run

The device simulator to target. Can be either a UDID, a device name (e.g., "iPhone 11"), or a device name and
OS version ("iPhone 11::13.3").

50 Chapter 2. Community

Briefcase Documentation, Release 0.3.6

Android

When generating an Android project, Briefcase produces a Gradle project.

Icon format

Android projects use .png format icons, in round and square variants. An application must provide the icons in the
following sizes, for 2 variants:

• round:

– 48px

– 72px

– 96px

– 144px

– 192px

• square:

– 48px

– 72px

– 96px

– 144px

– 192px

Splash Image format

Android projects use .png format splash screen images. A splash screen should be a square image with a transparent
background. It must be specified in a range of sizes and variants, to suit different possible device sizes and device
display densities:

• normal (typical phones; up to 480 density-independent pixels):

– 320px

– 480px (hdpi)

– 640px (xhdpi)

– 1280px (xxxhdpi)

• large (large format phones, or phone-tablet “phablet” hybrids; up to 720 density-indpendent pixels):

– 480px

– 720px (hdpi)

– 960px (xhdpi)

– 1920px (xxxhdpi)

• xlarge (tablets; larger than 720 density-independent pixels)

– 720px

– 1080px (hdpi)

2.4. Reference 51

Briefcase Documentation, Release 0.3.6

– 1440px (xhdpi)

– 2880px (xxxhdpi)

Consult the Android documentation for more details on devices, sizes, and display densities. This list of common
devices with their sizes and DPI may also be helpful.

You can specify a background color for the splash screen using the splash_background_color configuration
setting.

Android projects do not support installer images.

Application configuration

The following options can be added to the tool.briefcase.app.<appname>.android section of your
pyproject.toml file.

version_code

In addition to a version number, Android projects require a version “code”. This code is an integer version of your
version number that must increase with every new release pushed to the Play Store.

Briefcase will attempt to generate a version code by combining the version number with the build number. It does this
by using each part of the main version number (padded to 3 digits if necessary) and the build number as 2 significant
digits of the final version code:

• Version 1.0, build 1 becomes 1000001 (i.e, 1, 00, 00, 01)

• Version 1.2, build 37 becomes 1020037 (i.e., 1, 02, 00, 37)

• Version 1.2.37, build 42 becomes 1023742 (i.e, 1, 02, 37, 42)

• Version 2020.6, build 4 becomes 2020060004 (i.e., 2020, 06, 00, 04)

If you want to manually specify a version code by defining version_code in your application configuration. If
provided, this value will override any auto-generated value.

Additional options

The following options can be provided at the command line when producing Android projects

build

-d <device> / --device <device>

The device simulator to target. Can be either a device ID, or a device name.

52 Chapter 2. Community

https://developer.android.com/training/multiscreen/screensizes
https://material.io/resources/devices/
https://material.io/resources/devices/

Briefcase Documentation, Release 0.3.6

run

The device simulator to target. Can be either a device ID, or a device name.

2.4. Reference 53

	Table of contents
	Tutorial
	How-to guides
	Background
	Reference

	Community
	Tutorial
	How-to guides
	About Briefcase
	Reference

